What Is Topology Optimization?
Knowledge

What Is Topology Optimization?

Under the influence of the China-US trade war and COVID-19, the border management of various countries is still very strict, and global economic and trade activities have not been thawed, which has caused the price of some raw materials to rise. Therefore, if machine tools can be designed with a lightweight structure, it will reduce manufacturing costs and increase profits. Lightweight moving castings can also improve the dynamic characteristics, which will be of considerable help to high-speed or high-precision machine control.
Published: Jul 09, 2021
What Is Topology Optimization?

What Is Topology Optimization?

Topology optimization is a mathematical method that can optimize the material layout in each design space for a set of given loads, boundary conditions, and constraints, and let the design meet the given conditions (loads, boundary conditions, constraints) for the optimized performances. The difference between topology optimization and shape optimization or size optimization is that the design can obtain any shape in the design space. Usually, topological optimization will use the finite element method to evaluate the design performance.

Machine tool terminal applications can be roughly divided into rough machining processes with high removal volume and finishing processes requiring precision and surface finishing. The essence of the machine is an electro-mechanical, integrated system, including machine structure and servo drive control modules. Therefore, to simulate the dynamic characteristics of the machine by CAE analysis technology, it is necessary to integrate the machine structure and the servo drive control module, to construct a complete electro-mechanical, integrated multi-body dynamic, digital model. The correctness of each subsystem model is guaranteed. It will affect the results of the dynamic simulation analysis of the whole machine.

In recent years, although the machine tool industry has gradually introduced CAE computer simulation analysis technology for machine development, most of these technologies are still based on static rigidity analysis and modal analysis. The analysis results are not yet sufficient to directly match the cutting efficiency and cutting accuracy that machining users want. The cutting accuracy or machine development processing efficiency often does not meet the customer's expectations, or the mold surface processing lines are abnormal. At the initial stage of development, the machine and equipment will have application conditions linked to the design process. The clearer the requirements and more precise the design, the quicker topology optimization technology can be integrated to modify the structure.

Topology optimization design technology of electro-mechanical integrated structure

With structural topology optimization technology, combined with electro-mechanical integration technology, if the rigidity of the casting is defined as the topological optimization target, and the dynamic error demand is used to reverse the moving casting weight as the topological optimization constraint, the tool that best meets the design target requirements can be automatically solved. The machine structure design can not only meet the light weight requirements, but also eliminate the need for multiple modifications in the casting design. Final precision cutting requirements can be met and high-efficiency structural optimization can be achieved, effectively reducing the influence of human subjective factors, and greatly improving the design development efficiency.

At present, most structural topology optimization technologies are aimed at static rigidity or modal frequency. More advanced methods can also be used to optimize the structure of the frequency response function FRF amplitude, but this optimization result is only required for a high cutting removal rate. The terminal application can predict the cutting depth under the processing requirements. There is no clear index for the finishing surface texture requirements. This often results in abnormalities in the mold surface processing lines after the machine development is completed. The dynamic error performance of the machine is comparable to the precision of the machine, which will be reflected in the quality of the processed surface texture. The integration of structural topology optimization technology with electro-mechanical simulation technology enables the construction of electro-mechanical, structure topology optimization. The user defines the dynamic error required under empty running machine acceleration. The mathematical relationship between the weight of the moving casting and the dynamic error can be deduced as the topology optimization. The optimization of this structure is directly related to the end cutting accuracy, which can greatly improve the development efficiency.

The machine tool can be set to different configurations to meet different industrial application scenarios. The frequency response function FRF is a very important quantitative indicator of the machine. For the rough machining process, processing efficiency is the main consideration. The frequency response function FRF can be integrated into the calculation model of the cutting chatter steady-state graph to evaluate the cutting efficiency. For the finishing process, the machining accuracy is the main consideration, and the dynamic error performance of the machine is related to the quality of the finishing surface texture. If the dynamic error of the empty running track of the machine structure can be effectively reduced in the design, the machining accuracy will be better in the real machine fine cutting.

Mechanical and electrical integration analysis technology can effectively predict the dynamic error of the machine, and the dynamic error performance of the machine is related to the inertia (mass) of the moving casting of each axis. The user defines the dynamic error of machine acceleration during empty running, and the weight of the moving casting can be determined. The dynamic error is used as the limiting condition of topology optimization, and the optimization result of this structure is directly related to the final cutting accuracy.

Topology optimization design technology SOP and benefits of electro-mechanical integrated structure

The standard operating process of the mechanical and electrical integration structure topology optimization design technology: The user defines the dynamic error of the required machine under empty running acceleration. The special module of the mechanical and electrical integration of the machine tool and can reverse the mathematical relationship between the dynamic error of the moving casting and the weight curve. Using the aforementioned relational expression as the limiting condition of topology optimization, the optimization result of this structure can directly meet the designer's dynamic error requirements. Compared with traditional topology optimization technology, it is not necessary to integrate the mechanical and electrical integration technology to determine the dynamic error performance at the initial design stage. By modifying the casting design at the development end, you can confirm whether the path error generated after the machine and the servo control match the customer's accuracy requirements. The electronically controlled machine processes are also in the development stage. With the integration of different servo control parameters and structures, you can quickly integrate mechanisms, electric controls, and processes into the initial stage of machine development to improve machine tools development efficiency. The overall change of design technology will lead to a qualitatively changed, high-quality machine tool design process.

Published by Jul 09, 2021 Source :maonline

Further reading

You might also be interested in ...

Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Headline
Knowledge
A Comprehensive Guide to Selecting Cutting Techniques in Plastic Bag Production
This article provides a detailed comparison of hot and cold cutting methods used in plastic bag manufacturing, emphasizing how the choice impacts production efficiency, edge sealing, and material compatibility. Hot cutting uses heated blades to cut and seal simultaneously, making it ideal for leak-proof and high-speed production, while cold cutting offers precise, sharp cuts without heat damage, suitable for a variety of bag types. The selection depends on factors such as material type, production requirements, and environmental considerations. Understanding the strengths and limitations of each method helps manufacturers optimize their processes and meet evolving industry demands.
Headline
Knowledge
Exploring Ventilator-Associated Pneumonia (VAP) and Its Effects on ICU Patients
Ventilator-associated pneumonia (VAP) is a significant healthcare challenge in intensive care units, typically occurring in patients who have undergone mechanical ventilation for at least 48 hours. It is associated with high morbidity, mortality, and healthcare costs. VAP develops due to respiratory tract colonization by pathogens, facilitated by invasive devices like endotracheal tubes. Common bacteria include Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Risk factors range from prolonged ventilation to prior antibiotic use and underlying health issues. Diagnosing VAP is difficult due to overlapping symptoms with other lung conditions and the absence of standardized criteria, often leading to antibiotic overuse. Preventive strategies—such as ventilator care bundles, elevating the head of the bed, maintaining oral hygiene, and staff training—are critical to reducing its incidence. While progress has been made, ongoing research and consistent application of evidence-based practices are essential to improve outcomes and lower the burden of VAP in ICU settings.
Headline
Knowledge
Popping Boba: A Comprehensive Exploration
Popping boba, also known as bursting boba or popping pearls, is a fascinating and popular addition to the world of beverages and desserts. These small, colorful spheres are known for their unique texture and the burst of flavor they provide when consumed. This article delves into the intricacies of popping boba, exploring its composition, production process, popularity, and culinary applications. By examining various sources, this report aims to provide a comprehensive understanding of popping boba, highlighting its significance in contemporary food culture.
Headline
Knowledge
Nylon and Sustainability: Exploring Greener Alternatives for the Future
Nylon has been a widely used synthetic material since the early 1900s, valued for its strength, flexibility, and resilience. From fashion to industrial use, it’s found in countless products. But as sustainability becomes a global priority, nylon’s environmental impact has come under greater scrutiny. This article takes a closer look at how nylon is made, its environmental challenges, and the more sustainable options now available.
Headline
Knowledge
EPE Pearl Cotton Recycling Solution: A Comprehensive Overview
This article examines the recycling of Expanded Polyethylene (EPE) Pearl Cotton—a lightweight, shock-absorbing, and moisture-resistant packaging material. While EPE offers many benefits, its bulky form and high transportation costs make recycling difficult. However, advancements in recycling technologies and increasing environmental awareness are driving the development of more effective solutions. The report explores current challenges, emerging recycling methods, and the future potential of EPE recycling.
Headline
Knowledge
Are Compatible Toner Cartridges a Smart Choice? A Comprehensive Analysis
Toner cartridges play a crucial role in both the performance and cost-effectiveness of printing. Among the available options, compatible toner cartridges—third-party products made to function with branded printers—have become a widely used alternative to Original Equipment Manufacturer (OEM) cartridges. This report examines the advantages and disadvantages of compatible cartridges, considering factors such as cost, environmental impact, print quality, and potential risks. By drawing on diverse sources, it provides a balanced evaluation of their suitability for personal and business use.
Headline
Knowledge
Pneumatic Power Tools: Reliable, High-Performance Solutions for Industrial Applications
Pneumatic power tools, commonly known as air tools, are widely used in industrial, automotive, and construction settings due to their efficiency, durability, and power. These tools operate using compressed air, making them a lightweight and high-powered alternative to electric or battery-operated tools. Pneumatic power tools consistently perform well, even under the most demanding conditions. They come in various forms, including impact wrenches, pneumatic drills, sanders, grinders, ratchets, air hammers, chisels, paint sprayers, nail guns, and staplers.
Headline
Knowledge
Introducing the Vise Grip: A Tool of Precision and Power
In 1921, in the quiet workshop of a small-town Nebraska blacksmith, William S. Petersen, a Danish immigrant, invented an ingenious tool that forever changed the landscape of hand tools. He created a new type of pliers with a vise-like grip that could lock onto his work. The Vise-Grip's unique ability to securely latch onto any object with unparalleled precision and strength not only made it a tool but a true extension of the craftsman's hand. This provided an adjustable, locking grip for a wide range of applications.
Headline
Knowledge
Adjustable Wrenches and Pipe Wrenches: Essential Tools for Plumbing and Maintenance
Adjustable wrenches and pipe wrenches have long been recognized as effective solutions for mechanical repairs, plumbing, and construction. Due to their ability to adjust jaw width, they are extremely versatile, allowing a single wrench to fit various sizes of nuts, bolts, and pipes. Their practicality and durability have made them indispensable tools for both professionals and DIY enthusiasts. Each type of wrench serves a unique function and offers distinct benefits.
Headline
Knowledge
RO Filter System Quick Fit Connectors: A Reliable and Efficient Solution
Quick fit connectors have become a preferred solution for connecting tubing in reverse osmosis (RO) filter systems due to their ease of use, reliability, and efficiency. Traditional threaded and compression fittings often require tools and careful handling to ensure a secure and leak-free connection. Quick fit connectors, however, offer a tool-free, push-to-connect mechanism that ensures a tight seal in seconds. Their widespread adoption in RO filtration and other water treatment applications highlights their effectiveness in enhancing system performance and installation convenience.
Agree