What Is Topology Optimization?
Knowledge

What Is Topology Optimization?

Under the influence of the China-US trade war and COVID-19, the border management of various countries is still very strict, and global economic and trade activities have not been thawed, which has caused the price of some raw materials to rise. Therefore, if machine tools can be designed with a lightweight structure, it will reduce manufacturing costs and increase profits. Lightweight moving castings can also improve the dynamic characteristics, which will be of considerable help to high-speed or high-precision machine control.
Published: Jul 09, 2021
What Is Topology Optimization?

What Is Topology Optimization?

Topology optimization is a mathematical method that can optimize the material layout in each design space for a set of given loads, boundary conditions, and constraints, and let the design meet the given conditions (loads, boundary conditions, constraints) for the optimized performances. The difference between topology optimization and shape optimization or size optimization is that the design can obtain any shape in the design space. Usually, topological optimization will use the finite element method to evaluate the design performance.

Machine tool terminal applications can be roughly divided into rough machining processes with high removal volume and finishing processes requiring precision and surface finishing. The essence of the machine is an electro-mechanical, integrated system, including machine structure and servo drive control modules. Therefore, to simulate the dynamic characteristics of the machine by CAE analysis technology, it is necessary to integrate the machine structure and the servo drive control module, to construct a complete electro-mechanical, integrated multi-body dynamic, digital model. The correctness of each subsystem model is guaranteed. It will affect the results of the dynamic simulation analysis of the whole machine.

In recent years, although the machine tool industry has gradually introduced CAE computer simulation analysis technology for machine development, most of these technologies are still based on static rigidity analysis and modal analysis. The analysis results are not yet sufficient to directly match the cutting efficiency and cutting accuracy that machining users want. The cutting accuracy or machine development processing efficiency often does not meet the customer's expectations, or the mold surface processing lines are abnormal. At the initial stage of development, the machine and equipment will have application conditions linked to the design process. The clearer the requirements and more precise the design, the quicker topology optimization technology can be integrated to modify the structure.

Topology optimization design technology of electro-mechanical integrated structure

With structural topology optimization technology, combined with electro-mechanical integration technology, if the rigidity of the casting is defined as the topological optimization target, and the dynamic error demand is used to reverse the moving casting weight as the topological optimization constraint, the tool that best meets the design target requirements can be automatically solved. The machine structure design can not only meet the light weight requirements, but also eliminate the need for multiple modifications in the casting design. Final precision cutting requirements can be met and high-efficiency structural optimization can be achieved, effectively reducing the influence of human subjective factors, and greatly improving the design development efficiency.

At present, most structural topology optimization technologies are aimed at static rigidity or modal frequency. More advanced methods can also be used to optimize the structure of the frequency response function FRF amplitude, but this optimization result is only required for a high cutting removal rate. The terminal application can predict the cutting depth under the processing requirements. There is no clear index for the finishing surface texture requirements. This often results in abnormalities in the mold surface processing lines after the machine development is completed. The dynamic error performance of the machine is comparable to the precision of the machine, which will be reflected in the quality of the processed surface texture. The integration of structural topology optimization technology with electro-mechanical simulation technology enables the construction of electro-mechanical, structure topology optimization. The user defines the dynamic error required under empty running machine acceleration. The mathematical relationship between the weight of the moving casting and the dynamic error can be deduced as the topology optimization. The optimization of this structure is directly related to the end cutting accuracy, which can greatly improve the development efficiency.

The machine tool can be set to different configurations to meet different industrial application scenarios. The frequency response function FRF is a very important quantitative indicator of the machine. For the rough machining process, processing efficiency is the main consideration. The frequency response function FRF can be integrated into the calculation model of the cutting chatter steady-state graph to evaluate the cutting efficiency. For the finishing process, the machining accuracy is the main consideration, and the dynamic error performance of the machine is related to the quality of the finishing surface texture. If the dynamic error of the empty running track of the machine structure can be effectively reduced in the design, the machining accuracy will be better in the real machine fine cutting.

Mechanical and electrical integration analysis technology can effectively predict the dynamic error of the machine, and the dynamic error performance of the machine is related to the inertia (mass) of the moving casting of each axis. The user defines the dynamic error of machine acceleration during empty running, and the weight of the moving casting can be determined. The dynamic error is used as the limiting condition of topology optimization, and the optimization result of this structure is directly related to the final cutting accuracy.

Topology optimization design technology SOP and benefits of electro-mechanical integrated structure

The standard operating process of the mechanical and electrical integration structure topology optimization design technology: The user defines the dynamic error of the required machine under empty running acceleration. The special module of the mechanical and electrical integration of the machine tool and can reverse the mathematical relationship between the dynamic error of the moving casting and the weight curve. Using the aforementioned relational expression as the limiting condition of topology optimization, the optimization result of this structure can directly meet the designer's dynamic error requirements. Compared with traditional topology optimization technology, it is not necessary to integrate the mechanical and electrical integration technology to determine the dynamic error performance at the initial design stage. By modifying the casting design at the development end, you can confirm whether the path error generated after the machine and the servo control match the customer's accuracy requirements. The electronically controlled machine processes are also in the development stage. With the integration of different servo control parameters and structures, you can quickly integrate mechanisms, electric controls, and processes into the initial stage of machine development to improve machine tools development efficiency. The overall change of design technology will lead to a qualitatively changed, high-quality machine tool design process.

Published by Jul 09, 2021 Source :maonline

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree