CAD, CAE and CAM Technology in Mechanical Design
Knowledge

CAD, CAE and CAM Technology in Mechanical Design

In the machinery industry or automation industry, CAD, CAE, and CAM complement each other. Design with CAD and then manufacture with CAM. CAD is the design process using computer technology, CAE is the use of computer simulation to analyze physical problems, and CAM is the use of computers and computer software to control machines for manufacturing, usually suitable for mass-produced parts.
Published: Jun 06, 2022
CAD, CAE and CAM Technology in Mechanical Design

CAD/CAE/CAM are three functional types of industrial design software, representing computer-aided design, computer-aided engineering, and computer-aided manufacturing. CAD/CAE/CAM will be included in the basic functions of large-scale industrial design software suites. CAD emphasizes the design of the product itself from scratch, such as appearance, component position matching, material, etc. CAE for simulation, analysis requirements design, and CAM for 3D prototyping and fabrication purposes.

What is Computer-Aided Design (CAD)?

Computer-aided design (CAD) refers to the process of using computer software to create and analogize physical designs to show the appearance, structure, color, texture, and other characteristics of newly developed products. To put it simply, CAD is used to assist in designing and drawing. With the continuous development of technology, computer-aided design is not only suitable for the industry but also widely used in many fields such as graphic printing and publishing. It involves both software and dedicated hardware.

What are the Functions of the CAD System?
  • Reuse of design components.
  • Ease of design modification and versioning.
  • Automatic generation of standard components of the design.
  • Validation/verification of designs against specifications and design rules.
  • Simulation of designs without building a physical prototype.
  • Automatic design of assemblies.
  • The output of engineering documents, such as manufacturing drawings, and bills of materials.
  • Direct output of designs to production units.
  • Direct output to rapid prototyping or rapid industrial prototyping machines.

What is Computer-Aided Engineering (CAE)?

Computer-Aided Engineering (CAE) is mainly used for simulation analysis, verification, and improvement of designs. With the rapid development of computers and 3D CAD in recent years, the proportion of CAE applications has become higher and higher, the difficulty of use has become lower and lower, and the number of users has grown significantly. Compared to CAD, CAE users require more physics-related knowledge to set conditions and interpret results. As for the mathematical methods used in the calculation process, such as differential equations, finite element method, finite volume method, etc., all can be handed over to the computer for processing.

Advantages of CAE:
  • Save experiment cost and time, and speed up the development process.
  • Physical quantities that are difficult to obtain experimentally can be obtained through simulation.
  • It is easier to observe physical phenomena and changes in physical quantities.
  • Product performance can be further optimized through numerical methods.
Disadvantages of CAE:
  • Large-scale computing often requires expensive high-performance equipment.
  • The interpretation of simulation results still requires the experience and knowledge of engineers to make correct judgments.
What are the Basic Processes of CAE?
  1. Step 0: Geometric model processing
    The 0th step is the processing of the geometric model. Why is it the 0th step? One is that this step will not use the simulation software. Mainly because the processing quality will greatly affect the solution, and sometimes it is quite cumbersome to handle. For example, in the fluid simulation, the inner space of the fluid flow is required, and the inner space is not especially drawn in general, so the inner space must be drawn according to the shell geometry. In addition, the complex features inside the model should also be simplified as much as possible. Although the pipeline has no complex features, if the model is not properly simplified, it will consume a lot of resources to calculate, and even the solution will fail.
  2. Step 1: Preprocessing
    The pre-processing is mainly to divide the mesh and set the simulation conditions. Usually, the geometry of the simulated object is quite complex, and there is no way to directly calculate the Governing equation corresponding to this geometry. To solve this problem, researchers cut this complex shape into multiple simple elements, which may be cubes, polyhedrons, etc., and then solve the equation on each element, and then obtain the corresponding value of the entire complex shape through mathematical operations. Simulation results. This step of slicing complex shapes into multiple elements is meshing. Continue to set simulation conditions, generally referred to as boundary conditions. In addition, the condition set also includes the selection of different physical models and the selection of media.
  3. Step 2: Solve
    After completing the simulation settings, in the solution step, you need to tell the software what method to use to calculate the problem, including the grid discretization format, the selection of the solution algorithm, and so on. After completing the solution set, the next step is to wait for the software or the program written by yourself to solve it.
  4. Step 3: Post-processing
    Assuming everything went well and the software successfully calculated the answer, the next step is to look at the results. Use post-processing software to view information such as velocity fields, flow traces, etc. inside the pipeline. If it is necessary to improve and optimize the product, it can also be judged from the simulation results, and then the relevant configuration and simulation conditions can be improved.

What is Computer-Aided Manufacturing (CAM)?

Computer-Aided Manufacturing (CAM) is the process of manufacturing product components in which engineers make extensive use of product lifecycle management computer software. In other words, CAM is used to assist manufacturing, and the final output of CAM automatic programming is the CNC machining program. The 3D models of components generated in CAD are used to generate the CNC code that drives the numerically controlled machine tools. This includes the engineer selecting the type of tool, the machining process, and the machining path.

The Processing Steps of Computer-Aided Manufacturing:

Depending on the material and the software used, each step is a simple or complex strategy.

  1. Rough machining:
    The process begins with cubic stock or castings, which are roughly machined into the final model. Because it is processed in the horizontal direction, a stepped shape is usually obtained. Common strategies are zig-zag clearing, offset clearing, plunge roughing, and rest-roughing.
  2. Semi-finishing:
    The process starts with a roughed, uneven part, and the part is machined at a fixed offset.
  3. Finishing:
    Like semi-finishing, but with different starting materials.
Changes brought by CAD/CAM technology to industrial manufacturing:

CAD/CAM refers to the use of computers to analyze, simulate, design, draw and draw up production plans, and manufacturing procedures, and control the production process, that is, from design to processing, all relying on the help of computers, so CAD/CAM is an important part of automation, affecting industrial productivity and quality.

  1. The production of CNC machining:
    With the growth of the production of consumer goods in the aviation industry, the automobile industry, and the light industry, the requirements for precision of products have increased, the structure and shape have become more complex, and the development and manufacturing cycle has become shorter and shorter, and traditional machining cannot meet the demand, so CNC machining came into being.
  2. The generation of CAD/CAM software:
    The application of CNC machining improves the production accuracy and production efficiency. However, when the structure and shape of the product are complex, it is difficult to complete the preparation of the machining program by using the traditional numerical control manual programming technology, so CAD/CAM emerges as the times require.
  3. Features of CAD/CAM software:
    • Three-dimensional modeling function; as mentioned above, the geometric information of the machined surface is the basis for the calculation of the software tool path, so the software can provide basic surface modeling functions.
    • Parameter management: parameters include processing objects, tool parameters, machine tool parameters, processing technology, etc.; parameter setting is the main operation content of interactive graphics programming. It includes input modification of parameters, management optimization, etc.
  4. Policy:
    Intuitively and realistically graphically simulate the machining process to verify whether there is any problem with the programmed program.
  5. Editing and modification of tool path:
    Provide various methods to edit the NC tool path.
  6. Post-processing:
    It is a word processing process, the program can meet the equipment requirements, and some auxiliary instructions are added at the beginning and end of the program.
  7. Process document generation:
    Write the information required by the machine tool operator (such as program name, machining sequence, and tool data) into standard and standardized documents.
Published by Jun 06, 2022 Source :wikipedia, Source :wikipedia

Further reading

You might also be interested in ...

Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Headline
Knowledge
How CNC Technology Ensures the Invisible Safety of Flight
The aerospace industry demands extremely high standards for component precision, lightweight design, and durability, and CNC (Computer Numerical Control) technology is a key enabler to meet these requirements. It is widely used in the production of critical parts such as turbine blades, airframe structures, and landing gear. With the global aerospace market expected to grow from USD 900 billion in 2023 to USD 1.2 trillion by 2030 (CAGR ~4.2%), CNC technology, with its micron-level precision and automation capabilities, not only helps improve aircraft fuel efficiency by around 10% but also ensures all components comply with the stringent AS9100D certification standards, making flight safer and more reliable.
Agree