Methods and Practical Application Scenarios of Industrial Calibration
Knowledge

Methods and Practical Application Scenarios of Industrial Calibration

Calibration is a quantitative comparison. Check the reading of the instrument, it is achieved by measuring the actual standard part, and the deviation between the measured value and the actual value is corrected.
Published: Jun 28, 2022
Methods and Practical Application Scenarios of Industrial Calibration

What is Calibration and Why is it Important?

Calibration refers to the use of a standard to obtain the relationship between the value displayed by the measuring instrument and the actual value. Calibration with a standard ensures the reliability of the measuring instrument. The timing to perform calibration is to perform calibration before and after using the measuring instrument. If you want to continuously use the measuring instrument and calibrate it regularly, the calibration cycle should be determined in advance, and the calibration should be performed according to the cycle, which is called the calibration cycle. The determination of the cycle should be based on the manufacturer's recommendations and based on the frequency of use of the measuring instrument.

  • Definition of calibration: The comparison of a measured value with a corresponding reference value.
  • The purpose of calibration: Is to determine the deviation between the measured value and the corresponding true value.
  • True Value: True value is a theoretically determined value corresponding to the basic physical definition given by international standard practice or method. The true value only exists in theory, all measured values are required to be as close to the true value as possible.

Vision for Working Plane Correction Device and Correction Method for Industrial Equipment:

Industrial equipment, such as computer numerical control machine tools, robotic arms, etc., need to be calibrated before application to achieve the best application effect. These corrections include origin correction, tool coordinate correction, work plane correction, etc. At present, these calibration operations are all operated and taught by manpower.

Machine tools and robotic arms in industrial equipment have been widely used in large and small processing plants, among which various machine tools are used to cut and grind metal processing to make machines of the shape and size required by the processor. Due to the tandem feature between each axis, the robotic arm can achieve elastic applications with a high degree of spatial freedom. Many applications have been used in production lines or with machine tools for loading and unloading, light processing-related applications. Whether it is a machine tool or a robotic arm, its application accuracy will be affected by factors such as manufacturing, assembly, control, and environment. Therefore, before it is applied, it needs to undergo correction steps to return it to the original design function and accuracy. There are many corrections on the equipment, such as origin correction, tool coordinate correction, and workpiece coordinate correction. The calibration on these devices mainly relies on manual calibration. Industrial equipment takes a six-axis robotic arm with a high degree of spatial freedom as an example and uses a vision system for automatic correction of the working plane.

The six-axis robotic arm has six spatial degrees of freedom. In addition to moving in the XYZ direction, it can rotate around the XYZ axis. Therefore, it is necessary to teach the attitude of the six-axis robotic arm so that the flange surface or the end fixture is parallel to the working plane. The most common loading and unloading applications require extensive operator experience. Therefore, a vision system for working planes has been developed.

Automatic correction method:
  1. Hand-eye calibration
  2. Automatic correction method for working plane correction
  3. Experimental results of automatic correction of the working plane

Industrial Robot Calibration:

The accuracy of industrial robots is affected by many factors, such as manufacturing errors, mechanical properties of connecting rods, external forces (including rod weight), or working environment. Although the accuracy of the robot can be improved through some compensation techniques, most of the existing methods are corrected for hardware. The connecting rod parameter calibration and the inverse displacement analysis method with extremely high computational efficiency meet the needs of real-time control.

Industrial robots have many advantageous properties but are limited by poor precision. Therefore, when a general industrial robot needs to plan its work, it is usually taught manually. This method is that the operator guides the robot to each position to be reached, and records its coordinates at the same time. Since the reproducibility of most industrial robots is good, they can perform the actions taught with great precision. However, this manual teaching method limits the work of the robot. If a new job needs to be planned, it must stop and then go through complicated teaching and recording work to complete the planning.

This situation is caused by the lack of good absolute accuracy of the robot. The important factors affecting the position accuracy of the robot can be roughly divided into geometric and non-geometric.

  1. Geometric error: Including the link length, the twist angle of the link, the link offset, the initial position of the joint displacement, and the assembly error of the robot.
  2. Non-geometric error: Including compliance, gear backlash, decoder resolution, gear direction error, temperature gradient, and so on.

The calibration method of industrial touch screen:

Industrial touch screens are widely used in all walks of life because of their ruggedness, fast response, space-saving, and ease of communication. Industrial touch screens are finding their way into various embedded products, and most touch-enabled devices will require a calibration routine.

Published by Jun 28, 2022 Source :kknews, Source :automan

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree