What Is Reverse Engineering? Learn About Its Processes and Benefits
Knowledge

What Is Reverse Engineering? Learn About Its Processes and Benefits

Reverse engineering is a technical process used to analyze and research a target product. It is used to deduce and obtain the products design elements such as the product's processing flow, organizational structure, functional performance specifications, etc., to produce products with similar functions.
Published: Jun 01, 2022
What Is Reverse Engineering? Learn About Its Processes and Benefits

What Is Reverse Engineering?

The traditional design process is to create a new product from scratch, and then manufacture it. But what if the original CAD file is lost, or the original CAD data of the part cannot be obtained? Reverse engineering captures the appearance and size information of the finished product through 3D technology (such as 3D scanners, CT scanners, and three-coordinate measuring machines), and then reconstructs the CAD files of the original parts through 3D modeling software.

Reverse Engineering Requires a series of steps to gather precise information about product dimensions. Once collected, the data can be stored in a digital archive. Often, engineers enhance the design with new developments and innovations. Sometimes the design of the original model is completely copied.

Reverse Engineering is used to dissect the finished product to learn its functional material specifications and how to combine them. When a physical or manual model goes through the process of measuring → CAD data creation → 3D printing, or CAM output, it is called reverse engineering. This process can accelerate the timeliness and quality of product development, and can save time and costs.

Phase 1: 3D Scanning Services
After using a 3D Scanner to scan the object, the point data of the object is generated into an electronic file in STL format.

Phase 2: 3D Modeling Services
The scanned point data is used for point, line, and surface reverse 3D modeling to reconstruct the surface data of the object and create an original CAD file (STEP file format).

Why Is Reverse Engineering Necessary?

  1. Lost original CAD file:
    If the original design file has been lost, damaged, or cannot be restored or opened, the format cannot be modified. In this case, the CAD file (3D scanning + reverse modeling) will be restored through 3D scanning and reverse 3D modeling to quickly obtain digital data.
  2. Differences in how products are designed:
    In the past, designers may only do 2D graphic design, and then convert the data into 3D through CAD software; but now designers often make a 3D model by hand first, so a reverse engineering tool is required to convert this manual model into a 3D surface model, to facilitate the follow-up work.
  3. Analyze competing designs:
    When analyzing the strengths and weaknesses of competitors' products, it is usually preferred to use 3D Scanner technology to extract dimensional information and represent this information as a point cloud or automatic real-time mesh to further improve the quality of the products.
  4. Accelerate R&D innovation:
    Reverse engineering shortens product redesign time, and quickly captures design concepts without the need for manual hand drawings.
  5. Product design moves towards freeform surface modeling:
    At present, consumers not only consider functionality of products, but consider their appearance as well. However, using the traditional manufacturing method, if the original appearance created by the designer cannot be fully expressed, it may be necessary to use reverse engineering to meet the designer's requirements.
  6. To assist manufacturers in rapid production:
    Manufacturers can use reverse engineering to quickly produce parts without purchasing expensive parts from OEMs with long lead times.
  7. It is not easy to obtain forward design data:
    Based on commercial secrets, the original factory does not provide the original CAD data to the downstream manufacturers, but only provides the sample to the manufacturer, so it is necessary to restore the original CAD data through reverse engineering tools.
  8. Test positive design results:
    Another important function of reverse engineering is the inspection of finished products. This is called CAI (Computer-Aided Inspection.) Generally, quality inspection only tests the finished product. Through reverse engineering tools, a comprehensive quality inspection can be performed on the finished product, which can be evaluated to improve the product’s quality and stability.
  9. Preventive Maintenance Program:
    Reverse engineering can also be a key strategy in a manufacturer's proactive maintenance program. By reverse-engineering critical components before they fail, manufacturers can stock spare parts and reduce unplanned downtime.

Common Reverse Engineering Applications:

  • The original factory terminated the production of goods.
  • The files or components provided by the original factory do not conform to the design and need to be remade.
  • The original factory no longer exists, but consumers still need the goods.
  • The original design has been lost, damaged, and cannot be restored, the data file cannot be opened, or the file format cannot be modified.
  • Original design flaws that require improvement, such as thin or thick walls, require a process of digital modification and reproduction.
  • To make the designed part last longer, the product must be modified by design.
  • Analyze product strengths and weaknesses, or identify new developments through original designs.
  • Optimizing design parts so that the designed product can be made new or remanufactured in a cheaper way.
  • Analyze the advantages and disadvantages of competitors' products and further improve the quality of their products.
  • New product sample development.
  • Design of imitation and modification of products.
  • Rapid mold making.
  • Rapid prototyping.
  • Digital inspection of products.

Reverse engineering originated from hardware analysis in the commercial and military fields. Its purpose is to deduce the design principle of the product directly from the analysis of the finished product when the necessary production information cannot be easily obtained.

But on the other hand, reverse engineering may be mistaken for a serious infringement of intellectual property rights. But in practice, it may instead protect intellectual property owners. For example, in the field of integrated circuits, if a company is suspected of infringing intellectual property rights, reverse engineering techniques can be used to find evidence.

Published by Jun 01, 2022 Source :git

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree