Indispensable Mechanical Transmission Equipment in the Machinery Industry
Market News

Indispensable Mechanical Transmission Equipment in the Machinery Industry

In the past few years, with the continuous improvement of technologies such as artificial intelligence (AI), deep learning (DL), computer vision (CV), virtual reality (VR) and augmented reality (AR), the application scope of mechanical transmission components has expanded to each field.
Published: Apr 13, 2022
Indispensable Mechanical Transmission Equipment in the Machinery Industry

The technical threshold and precision requirements of mechanical transmission components are high, which also affects the performance and reliability of machine tools, industrial machinery, electric vehicles, high-tech equipment, and robotic arms. They are extremely important key components in machine tools.

What Is the Mechanical Transmission of Electronic Equipment?

Electronic equipment is comprised of many different types of machines. All these machines are related to the use of electricity and usually have some type of electric motor, hydraulic motor, manual controls, etc. Electronic devices can be used to generate electricity and control processes that control behavior of the mechanical device according to the load requirements.

Electronic equipment is located between the actuator (electric motor, hydraulic motor, manual controller, etc.) and the load (antenna, vacuum variable capacitor, magnetic or non-magnetic carrier, etc.), and makes the load move in a controlled manner according to the requirements of machinery being used. The mechanical transmission in electronic equipment is often an integral part of the servo system. Its function is to transmit power and motion, match and couple the actuator and the load, and ensure the coordination of mechanical, electrical, optical, magnetic, and other parts and components.

Types of Mechanical Transmissions in Electronic Equipment:

  1. General driver:
    The load is driven by an electric or hydraulic motor through a conventional mechanical transmission. The power transmission in early electronic equipment was almost always electromechanical (Electric motor → Traditional mechanical transmission → Load). With the development of hydraulic technology and motor technology, electro-hydraulic drive (Hydraulic motor → Traditional mechanical transmission → Load) and direct drive have gradually appeared.
    The electromechanical drive is characterized by reliable structure, mature technology, convenient use, and maintenance. The advantages of the electro-hydraulic drive are fast response, the small size of the hydraulic motor, suitable for high-power transmission, high static stiffness, and can withstand considerable overload without damage (Peak power can be as high as more than twice the rated power). The disadvantage is that the technical requirements for the manufacture, installation, and maintenance of hydraulic servo components and hydraulic systems are relatively high. Generally, the drive must rely on the traditional mechanical transmission device, the volume and weight are relatively heavy, the meshing transmission is noisy, and mechanical structure factors are also more affected.
  2. Direct drive:
    The load is directly driven by a special motor or hydraulic cylinder. Because the mechanical transmission device is omitted, the transmission precision and the structural resonance frequency are relatively high, so the servo bandwidth can be made relatively wide, which is beneficial to improve the stability and accuracy of the system.

Electronic Equipment Related Regulations and Policies: Waste Electrical and Electronic Equipment (WEEE)

Discarded computers, televisions, refrigerators, and mobile phones, etc., collectively referred to as electrical and electronic equipment waste, is one of the fastest-growing wastes in the EU, generating about 9 million tons in 2005 and is expected to increase to 12 million tons in 2020. To solve these problems, the European Union developed the WEEE specification.

Regarding the WEEE specification:

WEEE (Waste Electrical and Electronic Equipment), the European Union Waste Electrical and Electronic Equipment Directive, is mainly in response to the disposal method of waste electronic products. This directive regulates the requirements for selective treatment, classified collection, and recovery rate of electronic and electrical products when they are scrapped, but unlike RoHS, which has substance limits, it requires that electronic and electrical products within the jurisdiction be affixed with "Wheelie Bin", and be registered and subject to inspection and supervision as required.

WEEE 2.0 Product Control Category:
  • Category 1: Temperature Exchange Equipment
    Also known as TEE, includes all heating and cooling EEE equipment, including refrigerators, air conditioning units, and heat pumps.
  • Category 2: Large Screen Displays and Equipment
    Including monitors, TVs, laptops, tablets, and e-book reading devices with screens larger than 100 square centimeters. Does not include a smartphone (too small) or a smart fridge with a screen.
  • Category 3: Light Bulbs - Including Fluorescent Lights
    LED, HID, and LPS bulbs and tubes. Lamps and luminaires are not included.
  • Category 4: Large Equipment
    Includes any EEE not included in Category 1, 2, or 3 and which has at least one external dimension (L, W, H) greater than 50 cm. This typically includes washing machines, dryers, electric stoves, large medical equipment, photovoltaic panels, large light fixtures, etc.
  • Category 5: Small Devices
    Includes all EEE not included in other categories, has external dimensions (L, W, H) less than 50 cm, and is not IT equipment (Category VI). This includes vacuum cleaners, microwaves, small kitchen appliances, and consumer electronics.
  • Category 6: Small IT/Computer/Communication Equipment
    Includes all EEE not included in other categories, with external dimensions (L, W, H) less than 50 cm, for IT, computer motor calculation, or communication. Examples include smartphones, desktop computers, GPS devices, printers, tethers, and fax machines.
WEEE 2.0 applicable areas

All EU member states are subject to this directive if products are exported to these countries. Directives are issued by the European Union, and member states then formulate their norms by the directives.

Published by Apr 13, 2022 Source :easyatm

Further reading

You might also be interested in ...

Headline
Market News
Smart Milling Machines, IoT, and High-Speed Milling
Technological advancements in the machine tools industry are constantly shaping the way manufacturers approach production. The integration of Smart Milling Machines with the Internet of Things (IoT), often referred to as Industry 4.0, propels the industry toward unprecedented levels of efficiency and productivity.
Headline
Market News
CNC Milling AI Technology and Nano-Machining
Advancements in Computer Numerical Control (CNC) milling technology have propelled CNC milling machines into a new era of precision, speed, and efficiency. Nano-machining allows the fabrication of components and structures with dimensions on the nanometer scale, typically ranging from 1 to 100 nanometers. These technological advancements, combined with the integration of artificial intelligence (AI) and automation, have had a profound impact across manufacturing industries.
Headline
Market News
Innovations in Grinding Wheel Technology: Materials, Design and 3D Additive Manufacturing
From the rudimentary stones used in ancient times to the highly sophisticated wheels of today, the evolution of grinding wheel materials and design has been marked by a relentless pursuit of precision and efficiency. Early grinding wheels were often made from natural abrasives like sandstone. Today, materials such as aluminum oxide and silicon carbide, along with advancements in design and the introduction of additive manufacturing, have revolutionized the grinding process.
Headline
Market News
Environmental Sustainability in Grinding Operations
Grinding operations have significant environmental impacts, contributing to carbon emissions and resource depletion. The manufacturing industry is transforming for sustainability, with grinding machines adopting eco-friendly practices and pursuing green certifications to enhance their role in sustainable manufacturing.
Headline
Market News
The Evolution of Advanced Precision Grinding Machine Technologies
The evolution of precision grinding machines has been nothing short of revolutionary. With the integration of cutting-edge technologies, the sector has witnessed remarkable advancements, including the incorporation of Artificial Intelligence (AI), automation, and Industry 4.0. The latest innovations in grinding machine technology include the seamless integration of AI and automation, advanced control systems, as well as the profound impact of Industry 4.0 on grinding processes, driving higher efficiency, precision, and adaptability.
Headline
Market News
EDM in the Era of Industry 4.0: Challenges and Solutions
The integration of Electrical Discharge Machining (EDM) into Industry 4.0 marks a new era of smart manufacturing, where interconnected technologies, data-driven processes, and automation play pivotal roles. Incorporating EDM into the broader framework of Industry 4.0 has brought forth many new challenges, ranging from cybersecurity concerns to interoperability issues and the optimization potential of data analytics. These challenges have spurred the discovery of unique solutions to address them.
Headline
Market News
The Rise of Solid-State Drives: Accelerating the Future of Data Storage
As the demand for faster, more efficient, and reliable data storage solutions continues to increase at incredible rates, Solid State Drives (SSDs) have brought about a monumental leap forward from traditional Hard Disk Drives (HDDs). Known for their robust performance, durability, and efficiency, SSDs have quickly become the preferred storage solution over traditional HDDs.
Headline
Market News
Optical Switches: Revolutionizing Data Transmission
Optical switches are devices used in optical fiber communication networks to selectively switch or route light signals from one optical fiber to another without converting the optical signal to an electrical signal. They are used in optical communication networks, data centers, and other industries where efficient signal routing and switching are paramount.
Headline
Market News
Lighting the Way: The Rise of Solar Powered LED Lights
Solar Powered LED Lights merge the low power requirements of LED technology with the renewable energy capabilities of solar power, offering an eco-friendly solution for diverse lighting needs across various settings. From emergency response and relief efforts to captivating art exhibits, creative minds are continually discovering new and innovative uses for this transformative technology.
Headline
Market News
Maximizing Connectivity: USB-C to HDMI+VGA+Audio Splitters
With the ever-increasing complexity of electronic devices such as smartphones, laptops, and PCs, there has been a corresponding need for versatile and efficient ways to transmit the ever-increasing data and multimedia. To meet these rising data transfer needs and enhance digital connectivity, various forms of connectors have been designed.
Headline
Market News
The Art of Bicycle Manufacturing: Blending Tradition with Innovation
From traditional craftsmanship to modern production techniques, bicycle manufacturing represents a blend of artistry, precision engineering, and technological innovation. The contrast between traditional and modern techniques can significantly affect the final product’s quality, performance, appeal, and brand loyalty. Quality control and testing protocols, along with collaborative efforts that drive innovation, and the enduring value of craftsmanship, significantly influence the art of bike building.
Headline
Market News
USB “Fast Charge” Car Chargers: Evolution and Technology
Staying connected in today’s digital world is no longer a luxury—it's a necessity. Reliable and continuous use of smartphones and other portable electronics would not be possible without the constant connectivity offered by portable USB chargers. One very important category of USB chargers is those used in cars, which convert the car's 12V electrical supply into a USB-compatible electric output suitable for consumer electronics. This has led to a robust market for USB car chargers, highlighting the unique applications and benefits of these types of chargers.
Agree