Introduction to Deep Hole Threading
Knowledge

Introduction to Deep Hole Threading

The thread is usually the last feature added to the part. There are other challenges besides the exact parameters required and standard threading issues.
Published: Apr 25, 2023
Introduction to Deep Hole Threading

Introduction to Deep Hole Threading

The thread is usually the last feature added to the part. Therefore, the part usually takes a lot of manufacturing time, and if there is a problem, the cost of scrapping or rework is very high. It is important to understand the exact parameters required to generate the required threads. Applications that require deep-hole threads face other challenges besides standard threading issues.

But what is considered a deep hole thread? Experts agree that any thread depth that exceeds the normal standard is considered a deep hole for threading and is often greater than 3xD. Most manufacturers make standard tools with 1x, 2x, and 3xD resolutions, while deeper applications require custom tools.

Threading method and hole type

For deep hole threads, through holes or blind holes present different challenges, especially depending on the type of threading method used, whether it is tapping, thread milling, or thread forming. The choice between these methods is highly dependent on various factors. In most cases, thread milling is preferred in deep hole threading, especially in hard materials.

How to Perform Deep Hole Threading?

First, we need to define what a deep hole is and why it needs special consideration. In drilling, those holes with a depth greater than 3 times the hole diameter are called deep holes. Deep hole tapping means that the tapping depth is more than 1.5 times the diameter of the tap. For example, when a tap with a diameter of 1/4" is used to machine a thread with a depth of 3/8", this situation is usually called deep hole tapping.

Machining a deep hole thread means that it takes a long time to contact the tool and the workpiece. At the same time, more cutting heat and greater cutting force will be generated during the machining process. Therefore, tapping in small deep holes of special materials (such as titanium parts) is prone to tool breakage and thread inconsistency.

To solve this problem, two solutions can be adopted: (1) Increase the diameter of the hole before tapping; (2) Use a tap designed for deep hole tapping.

  1. Increase the diameter of the hole before tapping
    A suitable threaded bottom hole is very important for thread processing. A slightly larger threaded bottom hole can effectively reduce the cutting heat and cutting force generated during the tapping process. But it will also reduce the contact rate of the thread.
    The National Standards and Technical Committee stipulates that in deep holes, only 50% of the full height of the thread is allowed to be tapped on the hole wall. This is especially important when tapping small holes in special materials and difficult-to-process materials. Because although the thread contact rate decreases due to the decrease of the thread height on the hole wall, the thread length increases, so the reliable connection of the thread can still be maintained.
    The diameter increment of the threaded bottom hole mainly depends on the required thread contact rate and the number of thread heads per inch. Based on the above two values, the correct threaded bottom hole diameter can be calculated using empirical formulas.
  2. Cutting parameters
    As titanium parts are difficult to machine, it is necessary to fully consider the cutting parameters and tool geometry.
    • Cutting speed: Due to the large elasticity and deformation rate of titanium alloy, a relatively small cutting speed is required. When machining small holes in titanium alloy parts, the recommended circumferential cutting speed is 10-14 inches/min. We do not recommend using a lower speed, because that will lead to work hardening of the workpiece. Also, pay attention to cutting heat caused by tool breakage.
    • Chip pockets: When deep hole tapping, it is necessary to reduce the number of tap flutes to increase the chip space of each flute. In this way, when the tap is retracted, more iron filings can be taken away, reducing the chance of tool damage due to the blockage of iron filings. But on the other hand, the enlargement of the chip flute of the tap reduces the core diameter, so the strength of the tap is affected. So, this will also affect the cutting speed. Besides, spiral flute taps are easier to remove chips than straight flute taps.
    • Rake angle and relief angle: A small rake angle can increase the strength of the cutting edge, thereby increasing tool life; while a large rake angle is conducive to cutting metal with long chips. Therefore, when processing titanium alloys, these two factors must be considered comprehensively, and a suitable rake angle should be selected.
      The large clearance angle can reduce the friction between the tool and the chips. Therefore, sometimes the tapping angle is required to be 40°. When processing titanium metal, a large clearance angle is ground on the tap, which is conducive to chip removal. Also, the fully ground taps and the back-ground taps are conducive to tapping.
    • Coolant: When processing special materials, you must ensure that the cutting fluid reaches the cutting edge. To improve the flow of coolant, it is recommended to open a cooling groove on the back of the tap. If the diameter is large enough, an internal cooling tap can be considered.
Published by Apr 25, 2023 Source :canadianmetalworking

Further reading

You might also be interested in ...

Headline
Knowledge
Medical Consumables: Global Guardians of Health
Medical consumables are a wide range of products used by healthcare professionals on a daily basis, typically for a single use before being disposed of. Their primary purpose is to ensure patient care, maintain hygiene, and prevent the spread of infection. These items are crucial for everything from routine checkups to complex surgical procedures.
Headline
Knowledge
Closed Suction System: Revolutionizing Respiratory Care
In critical care, airway management is a vital part of sustaining a patient's life. When patients rely on ventilators, clearing respiratory secretions becomes a crucial aspect of daily care. This seemingly simple, yet critically important, procedure has undergone significant evolution over the past few decades, progressing from early open suctioning to today's more advanced and safer Closed Suction System (CSS).
Headline
Knowledge
Understanding Plastic Materials: A Professional Analysis and Application Guide
Plastic materials, due to their diverse properties and wide range of applications, have become indispensable in modern industries and daily life. Choosing the right plastic material for different needs is crucial for optimizing product performance and achieving environmental benefits. The following is a professional review of the characteristics, applications, and pros and cons of the main plastic materials.
Headline
Knowledge
Exploring Rubber Processing Technology: Core and Challenges of Modern Manufacturing
Rubber processing is one of the most critical stages in modern manufacturing. From vehicle tires to industrial equipment seals and various consumer goods, rubber materials are everywhere. As the demand for high-quality and efficient products rises, rubber processing technologies continue to evolve. This article explores the basic knowledge of rubber processing, key technologies, and future trends.
Headline
Knowledge
Understanding the Coffee Robot: A Comprehensive Analysis
This article provides a comprehensive overview of coffee robots—automated machines that brew and serve coffee using advanced robotics and artificial intelligence. It outlines their key features, including AI-driven customization, app connectivity, 24/7 efficiency, and diverse drink options. The report also examines their growing impact on the coffee industry, highlighting benefits for both consumers and businesses such as convenience, consistency, and reduced labor costs. Case studies like CafeXbot, Artly Coffee, and Rozum Café illustrate how coffee robots are reshaping the coffee experience and driving market growth worldwide.
Headline
Knowledge
Understanding PU Foam: Properties, Types, and Industrial Uses
PU foam is no longer merely a cushioning material. It has become a core functional component across sports, medical, fashion, and lifestyle industries. By adjusting density, thickness, and surface feel, PU can meet diverse requirements for breathability, antimicrobial performance, durability, and comfort. It also aligns with brand trends toward eco-friendly formulations and recyclable material solutions.
Headline
Knowledge
Understanding Helical Filters: A Comprehensive Overview
Helical filters are essential components in radio frequency (RF) and microwave engineering, playing a key role in signal filtering and processing. Known for their compact size, high Q-factor, and broad frequency range, these filters are widely used across various industries. This report provides an in-depth look at helical filters, including their structure, operating principles, advantages, limitations, and typical applications.
Headline
Knowledge
Boost Your Device’s Performance: A Guide to Choosing the Right Power Supply
Choosing the right power supply unit (PSU) is crucial for maximizing your device's performance, ensuring stability, and prolonging the lifespan of your components. A PSU is not just a simple component that provides power; it is the heart of your system that ensures each component receives the right amount of power safely and efficiently. This report will guide you through the essential considerations and steps to select the ideal PSU for your needs.
Headline
Knowledge
How to Choose the Ideal Wood Screws for Furniture and Cabinetry
Selecting the right wood screws is essential to building strong, stable, and visually appealing furniture or cabinets. Key factors include screw size, length, thread type, head style, and compatibility with different wood materials. Coarse threads suit softwoods, while fine threads are better for hardwoods. Choosing the proper head type ensures both function and aesthetics, while accounting for environmental changes helps maintain joint integrity. Pre-drilling pilot holes can also prevent splitting, especially in dense wood. By understanding these considerations, woodworkers can achieve durable, high-quality results in their projects.
Headline
Knowledge
How Effective Coolant Management Promotes Sustainable CNC Machining
Sustainable CNC machining increasingly relies on effective coolant management to reduce environmental impact, cut costs, and improve machining performance. Coolants are essential for lubrication, heat control, and chip removal, but improper handling leads to waste and higher expenses. Proper management practices—such as regular monitoring, filtration, recycling, automation, and using eco-friendly coolants—help extend coolant life, maintain machine health, and ensure consistent product quality. Although initial investment may be a barrier, the long-term benefits include cost savings, reduced waste, and enhanced operational efficiency. Future advancements in IoT and AI are expected to further optimize coolant systems, reinforcing sustainability in CNC machining.
Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Agree