Is That Possible to Use 3D Printing in Die and Mold Industry?
Photo by unsplash
Trend

Is That Possible to Use 3D Printing in Die and Mold Industry?

As adoption of 3D printing spreads throughout the larger sector of industrial manufacturing, the value of the technology as more than just a rapid prototyping tool is becoming increasingly evident. In this article, we gave an overview of how 3D printing is used to fabricate molds and dies for injection molding and die casting.
Published: Apr 20, 2020
Is That Possible to Use 3D Printing in Die and Mold Industry?
Photo by unsplash

3D Printed Molds

The most common for mass manufacturing plastic parts, injection molding involves injecting liquid plastic into a mold at high pressure. Filling all of the cavities of the mold, the plastic hardens, and the finished part is removed. Most often, the polymers used are thermoplastics, which are melted at high temperatures and cool upon entering the mold. Typically, molds are precision-machined from aluminum or steel, which can cost from thousands to hundreds of thousands of dollars. Therefore, injection molding is most cost-effective at high volumes in making tens of thousands to millions of parts. For low-run injection molding of 50 to 100 parts, 3D printing can be a more cost-effective option. Even when additive manufacturing (AM) isn’t being used to produce end parts, businesses are learning that it can be used for the fabrication of tooling for their traditional production processes. In particular, 3D printing molds and dies for injection molding and die casting holds a lot of potential due to the various benefits that AM offers in terms of making custom, on-demand and complex parts.

In particular, additive manufacturing (AM) can be more cost-effective for small batches of parts; however, in some cases, the technology can provide some benefits that are unique to 3D printing, regardless of batch size. This is particularly true of 3D-printed metal molds and dies that can survive much longer than plastic molds discussed in part one.

In many instances, however, different technologies are used for different stages of manufacturing. 3D printing, for example, is frequently preferred for prototyping, since it is simple, transportable and comes with incredibly low start-up costs. Injection molding, meanwhile, is often the go-to process for huge volumes of end-use parts, since it is fast and highly repeatable. One technology serves the research and development phase; the other takes care of production.

There are numerous examples where 3D-printed molds have improved the injection molding process in the following. Tool manufacturer cut cycle time by 17 percent, ultimately also reducing production time to market from 18 to 13 days. Polish tooling and injection molding company reduced cycle times by 30 percent, even was able to reduce the temperature of its tooling by 20°C, resulting in a 20-second drop in cooling times. Another tool center was able to cut its cycle time by 60 percent and scrap rate from 50 percent to zero.

Five things you need to consider if moving from 3D printing to injection molding

What happens when you create a 3D printed prototype and need to move to production with injection molding? How can you ensure a molded part will match the specifications of its printed counterpart, given the radical differences in the two manufacturing technologies? How do you plan to ensure success in both prototyping and production?

Design for injection molding where possible

If you’re planning to eventually move from 3D printing to injection molding, 3D printed prototypes must be designed so they are not only printable but also moldable. And this means following injection molding design principles — even during the 3D printing stage. Draft angles should be included, overhangs should be avoided and sharp corners should be rounded. Furthermore, complex infill patterns (which would improve the strength and efficiency of the 3D printed part) should be abandoned in favor of simple ribs, since mold cannot replicate those complex infill patterns.

Print with production materials

Injection molding, a highly flexible process, is compatible with a huge variety of plastics, while 3D printing is more limited in terms of available materials. But when designing a 3D printed prototype, it is important to choose a material that matches or at least mimics the material to be used during production.

Polish prototypes for a ‘molded’ finish

For mechanical or aesthetic parts, it is important to create prototypes with a surface finish that represents the finish of the final part. Mechanical parts may demand a certain level of friction or smoothness, so a prototype with a radically different texture will not be particularly useful. ​Thankfully, surface finishing treatments can be applied to transform the exterior of a 3D printed prototype. With a professional polish, applied with a cloth or buffing wheel, the surface roughness of a printed part can be dramatically reduced, even producing a mirror-like shine.

Go beyond FDM

FDM (Fused Deposition Modeling) 3D printers are a hugely popular choice for prototyping. They’re cheap, easy-to-use and compatible with a huge range of plastic filaments. On the other hand, more high-quality alternatives to FDM are capable of producing a more molded-like part.

Seek specialist advice

It may seem obvious, but one of the easiest ways to ensure a smooth transition between 3D printed prototypes and injection molded final parts is to discuss the entire project with an expert. If you plan to order a prototype through a professional service provider, be sure to let them know that the end-use part will be made using injection molding. Better still, use the same service provider for prototyping and production, allowing them to bridge the two processes with their expert know-how.

Now you have already known about 3D printing used in the die and mold industry, and we also give five things that you need to consider when you are moving from 3D printed to injection molding. I think it is not difficult to understand 3D printing knowledge, but it harder is to use it in real. However, you do not worry about that, because we will offer the latest news every day, just lock on our website.

Published by Apr 20, 2020 Source :moldingofdieandmould, moldingofdieandmould

Further reading

You might also be interested in ...

Headline
Trend
Comfort and Breathability Function: The Trend of Sustainable Development and Eco-friendly Materials
In today’s textile industry, with the growing awareness of environmental protection, sustainable development and eco-friendly materials have become mainstream trends. This fabric for sports support and rehabilitation braces is designed for long-term wear, providing exceptional comfort while offering excellent breathability. Its breathable properties effectively keep the skin dry, reducing odors and bacterial growth, ensuring the freshness and hygiene of the wearer.
Headline
Trend
AI Maglev Conveyor Systems: “Floating” into the Future of Manufacturing Logistics
Imagine goods no longer moving on rollers or belts, but gliding silently through the air like floating little trains—this is the magic of AI Maglev Conveyor systems. Magnetic levitation creates zero friction, low energy consumption, and minimal maintenance, while AI acts as a smart dispatcher, instantly rerouting, adjusting speed, and scheduling, making production lines unbelievably flexible. It’s not just cool—it can serve high-precision manufacturing like semiconductors and medical devices, with virtually no vibration. The market is skyrocketing, with manufacturing giants in China, Europe, and the U.S. racing to adopt it. Although the initial investment is high, the long-term benefits—energy savings, reduced maintenance, and efficiency gains—are remarkable. In the future, it will become the transport hub of smart factories, coordinating robots, systems, and human labor, so that walking into the facility feels like watching a silent, precise, and seamless showcase of future material handling.
Headline
Trend
The Rise of Digital Textile Printing: Replacing Traditional Dyeing and Printing, Moving Toward a Low-Pollution, Zero-Inventory Era
Traditional textile dyeing and printing have long been criticized for their high water consumption, heavy use of chemicals, and high energy demand—factors that not only impose a severe burden on the environment but also put pressure on the textile industry as it faces increasingly stringent environmental regulations. With the advancement of global sustainability policies and growing consumer awareness of environmental protection, Digital Textile Printing (DTP) has gradually come into the spotlight, emerging as a key direction for textile industry transformation. Featuring flexible production models, reduced environmental impact, and the ability to support small-batch, diversified designs, this technology is rapidly reshaping the landscape of the printing and dyeing sector.
Headline
Trend
AI Doctor is Here? A Medical Revolution Beyond Your Imagination
In the rapidly developing digital era, healthcare is being profoundly transformed by Artificial Intelligence (AI), the Internet of Things (IoT), and wearable devices. This is not just a technological upgrade; it is akin to the "iPhone moment" that disrupted traditional healthcare services and doctor-patient interactions, opening a new chapter in health management. Historically, medicine has been a "passive" journey fraught with uncertainty and high barriers. The powerful rise of AI is now painting a new blueprint for the global healthcare industry, steering health management toward a smarter and more personalized future.
Headline
Trend
YCS and International Bicycle Brands: A Collaboration Story
As cycling becomes more popular globally, particularly in the high-end sports bicycle sector, the demand for precision parts is steadily increasing. These components not only play a central role in a bike's performance but are also a direct reflection of the rider's experience. Many international brands are now placing a greater emphasis on personalized design and high-quality machining to meet the diverse needs of different users.
Headline
Trend
The Dual-Track Growth of Mental Health and Post-Acute Care: A New Focus for Healthcare Institutions in 2025
In 2025, the global healthcare system faces the dual challenges of a surge in chronic diseases and an aging population. The focus is shifting from treating a single illness to promoting holistic health. In the post-pandemic era, the demand for mental health services has risen sharply, with a continuous increase in the number of people suffering from anxiety and depression. To meet this challenge, healthcare institutions are actively adopting a dual-track strategy, focusing on expanding behavioral health services and ensuring seamless transitions to post-acute care. This approach is designed to enhance the continuity of patient care and improve long-term health outcomes.
Headline
Trend
Global Freight Transportation Trends Analysis
In recent years, the global freight market has continued to expand. In 2023, worldwide freight volume reached 11.6 billion tons, with maritime shipping still accounting for the largest share, while air and land transport have grown rapidly due to the rise of e-commerce. In the face of trends such as digitalization, automation, and low-carbon transportation, companies that leverage the latest transportation data and models will gain a competitive advantage and be better equipped to respond to future market changes.
Headline
Trend
Taiwan's Textile Transformation: Digitalization and Localization for Agile Responsiveness
Historically, the global textile industry relied on mass production and economies of scale for low-cost manufacturing. However, as consumer demands become increasingly diverse and dynamic, small-batch, high-mix production and fast delivery have become the market mainstream. Taiwan, with its complete and advanced textile supply chain and high-end functional fabric technology, has long demonstrated competitiveness on the international stage. Facing global supply chain restructuring and the fast fashion trend, Taiwan's textile industry is actively pursuing a digital and localized transformation. The goal is to build a flexible, responsive agile supply chain, making manufacturing a sustained competitive advantage.
Headline
Trend
Data Powers Smarter Forklifts: IIoT Drives Next-Level In-Plant Logistics
Factory material handling is undergoing a major evolution! From traditional manually operated forklifts and conveyor belts to smart equipment equipped with sensors, AI, and IIoT, these machines do more than just move materials—they’ve become “decision-making partners” connecting production, warehousing, and the supply chain. Real-time monitoring, predictive maintenance, and dynamic scheduling boost efficiency, cut costs, and reduce accidents. Leading factories worldwide are already achieving impressive results with smart material handling. In the future, forklifts and AGVs will be capable of self-diagnosis, cross-plant collaboration, and even intelligent energy management, steering the rhythm of the entire factory. Are you ready to embrace this smart logistics revolution?
Headline
Trend
The Trends of Instant Beverages: A New Era of Convenience, Health, and Flavor
In today's fast-paced world, "convenience" has become a top consideration for many shoppers. Instant beverages not only quickly satisfy thirst and provide an energy boost, but their popularity has surged again with the rise of the "stay-at-home economy" and remote work. From classic 3-in-1 coffee to high-end pour-over tea bags, instant drinks are entering a new era that balances quality and health.
Headline
Trend
New Perspectives on Food Trends: The Evolution from General Wellness to Precise Conditioning
The relationship between modern people and food is undergoing a profound transformation. We no longer view food as merely a necessity for survival, but as an art form—a tool for actively managing our physical condition. This trend is shifting from the vague concept of "wellness" to a more precise, scientific, and personalized approach. In the fast-changing food market, this has become an undeniable mainstream trend.
Headline
Trend
The Path to Upgrading Metal Fabrication: Digital Transformation, Low-Carbon Challenges, and Global Opportunities
Facing resource- and energy-intensive production processes, the metal fabrication industry must harness smart manufacturing and automation—deploying CNC machining, robotic arms, and AI monitoring—to cut costs and errors while enhancing precision and delivery reliability. Integration of ERP, MES, and APS platforms increases process transparency and enables real-time scheduling adjustments, forming a seamless data and management loop. It’s recommended to support this with global market size data and figures on rising automation investments to boost credibility.
Agree