6G Network Will Connect the World Faster
Trend

6G Network Will Connect the World Faster

To meet the innovative application needs of the next generation, while ensuring the best user experience and energy efficiency, MediaTek pointed out today that 6G will enable ubiquitous global network connectivity, and 6G data transmission rates will increase to 10 to 100 times that of 5G's, giving ultra-low latency that will match the requirements of advanced applications.
Published: Jan 26, 2022
6G Network Will Connect the World Faster

To meet the innovative application needs of the next generation, while ensuring the best user experience and energy efficiency, MediaTek pointed out today that 6G will enable ubiquitous global network connectivity, and 6G data transmission rates will increase to 10 to 100 times that of 5G's, giving ultra-low latency that will match the requirements of advanced applications.

Key technologies driving the development of 6G:

Three key technologies are required to drive 6G development: Artificial intelligence (AI), advanced radio frequency and optical technologies, and networking technologies.

  1. Artificial intelligence:
    AI has become one of the most popular research fields in many engineering disciplines. The biggest feature of 5G is the ability to greatly improve flexibility. 6G will use AI technology to further develop such flexibility. In the past, wireless research activities have led to the application of AI techniques in many fields, such as designing hand-off algorithms using neural networks and fuzzy logic.
    Although algorithms based on AI technology are rarely applied to wireless networks, for learning technologies (such as deep learning) or for new computing architectures, they can make such complex algorithms more practical. Great progress in algorithms has become the main force driving this trend. In the radio access network, core network, and applications, AI/cognitive technologies are widely used at each layer, and work best in combination applications. This adaptability helps improve network resilience and helps reduce operating and maintenance costs.
    Optimizing components through tuning adjusting in response to environmental interference or circuit aging/misalignment effects is a benefit of RF. By flexibly adjusting modems and protocols, spectrum management and demodulation can be enhanced, especially in the presence of heterogeneous interference. With the advent of spectrum sharing technology, federated learning technology can use each mobile device as a sensor, which facilitates a comprehensive but in-depth exploration of interference and coverage issues in large areas. Using AI to find suitable information routing mechanisms, including the use of satellite or terrestrial wireless relay technology, can develop more complete front haul and backhaul network support mechanisms.
    There are studies on how to use AI in the core network for system optimization, coordination, and maintenance. Adversarial learning is when AI cyber attackers and AI cyber defenders compete to find vulnerabilities and solutions. The use of adversarial learning can continue to improve overall AI-RAN (Artificial Intelligence and Radio Access Networks) security. At the application level, AI can predict background context and application information needs, as well as preset network parameters based on estimated information flow.
  2. RF and Optical Technology:
    A key driver of 5G technology has been the low-cost production of mmWave devices in recent years and the abundance of spectrum available in mmWave bands. This trend is expected to continue, with higher frequency and more energy-efficient installations emerging. Ultimately, this technology trend may improve the economic viability of terahertz (THz) communications. A single wafer can accommodate an entire phased array. If wireless power transfer is used, such phased array chips can communicate without external power pins. Another driving factor is the flexibility of RF components. These technologies are based on Field Programmable Gate Arrays (FPGAs) to create very small radio systems. 40 GHz in various frequency bands.
  3. Internet technology:
    6G network technology will follow SDN (Software-defined networking), NFV (Network functions virtualization), and network slicing technology. However, 6G may take these concepts to the extreme, customizing network slicing according to individual needs and applications, thereby providing users with a truly customized quality experience. Such systems using personalized network slicing are bound to use edge computing technology on a large scale and will form a fairly complex network responsibility distribution model between the core network and edge computing nodes.
Feasible 6G performance goals:

6G uses a variety of metrics, including general specifications for data transfer rates, latency, and availability. 6G will continue the trend that started with 5G, and through Quality of Experience (QoE), data transfer rates will increase, perhaps reaching the level of 1 TB per second. The time delay may be reduced to tens of milliseconds. In addition, age-of-information can be used to indicate the order of information by date, so that information can be processed in order of priority.

In the 5G era, reducing power consumption has been set as a goal, hoping to make the battery life of IoT devices up to 10 years, and perhaps further reduce power consumption in the future to facilitate energy harvesting, including backscatter communication. 6G may also include metrics and standards for energy harvesting and wireless power transfer requirements. 6G standards may also include security resilience metrics, especially given that quantum computing has the potential to break most encryption standards after 6G is implemented.

6G system design principles:

Simplexity, Optimization, and Convergence (S.O.C.) are the possible development directions of the 6G standard, which will accelerate the digital transformation and sustainable development of society.

  • Simplexity:
    To take into account high-performance requirements and excellent user experience, the 6G standard should simplify the design of traditional communication networks, and only retain the necessary complexity in exchange for higher system performance (such as support for different types of devices, wider spectrum range, spectrum properties adaptation), multi-network integration, etc.), strike a balance between complexity and simplicity, and on this basis respond to the global trend of energy conservation and carbon reduction, and optimize unit energy consumption.
  • Optimization:
    6G system optimization must be user experience-oriented so that both network providers and consumers are satisfied. System designers will optimize from three new key directions, namely wireless network heterogeneous architecture integration (providing networking resources with maximum efficiency), communication network intelligence (systematic optimization of communication networks with AI), and support for individual application scenarios the cross-layer design (directly provide the basic functions required by users, in place at one time).
  • Convergence:
    The fusion concept includes full-band access support, a fusion between devices/equipment and network nodes, the fusion of multiple wireless access technologies, a fusion of terrestrial and non-terrestrial networks, and comprehensive fusion of communication, perception, and computing, maximizing technology economies of scale to overcome challenges such as coverage and energy efficiency.

6G future five trends:

  1. The market's demand for communication system performance will further increase to support applications with higher requirements, such as holographic communication, tactile communication, digital twin, avatar, telepresence, and other technologies.
  2. Data transmission rates will increase to 10 to 100 times that of 5G, with ultra-low latency to meet the needs of advanced applications.
  3. Use the 7-24GHz and Sub-THz frequency bands to increase the Total Addressable Bandwidth to more than 50GHz. The addition of these two new frequency bands will be a strong foundation, paving the way for new extreme applications.
  4. Network densification is imperative to increase capacity in low-frequency bands and overcome the problem of propagation attenuation in new frequency bands. Due to fundamentally different physical properties, indoor base station deployment costs and other feasibility issues and challenges require a different approach than 5G.
  5. Achieve ubiquitous global network connectivity, including remote areas that are not currently covered by cellular networks technology.

Outlook for 6G technology:

5G Phase 1, or R15, provides a fairly solid foundation for enhancing subsequent releases by defining a high-performance new air interface (NR) and a resilient network architecture. R16 and subsequent releases focus on new verticals, hoping to greatly expand the application of wireless communication. R16 and subsequent versions will expand the supported services beyond the eMBB (Enhanced Mobile Broadband)-based R15. 5G LANs can replace or augment fixed or wireless LANs, as well as provide flexibility and enhanced performance.

In non-terrestrial networks, satellites use 5G to make services universal, continuous, and scalable. Important medical applications can deliver healthcare improvements and cost savings thanks to the performance provided by 5G. The development of 5G technology enables novel V2X (Internet of Vehicles) applications such as platooning, advanced driving, and remote driving. UAVs powered by 5G technology can support a wide variety of scenarios, including delivering medical supplies in the event of a disaster.

5G technology can assist audiovisual production services in and out of the studio. Network entity control applications can use 5G technology to implement Industry 4.0 on a large scale. NR-based positioning technology supports numerous use cases, including emergencies, UAV operations, AR/VR/XR, and factory automation. Haptic communication uses tactile sensing technology to elevate the user experience to a whole new level.

6G will take the user experience to a whole new level and revolutionize many industries. 6G may feature data transfer rates around 1 terabyte per second, latency in the order of milliseconds, and device and network energy efficiency. High-fidelity holographic projection communication and multi-sensory communication may become part of our daily life. Industries such as healthcare, manufacturing, entertainment, and transportation are being impacted by 5G, and in the 6G era, industries will experience a larger-scale transformation.

Published by Jan 26, 2022 Source :bnext

Further reading

You might also be interested in ...

Headline
Trend
What is a Quantum Computer? What are the Challenges in the Development of Quantum Computing?
The real power of quantum computers is not the speed of computing, but the ability to process problems in parallel. By harnessing the uncertainty of quantum physics, it could revolutionize medicine, accelerate artificial intelligence, and upend cryptography.
Headline
Trend
What is Tiny AI?
Tiny AI integrates low-power, small-volume NPU, and MCU adapts to various mainstream 3D sensors in the market. And supports three mainstream 3D sensing technologies such as structured light, ToF, and binocular stereo vision, to meet the needs of voice, image, and so on to identify needs.
Headline
Trend
What is a Data Lake?
A data lake is a centralized repository for storing, processing, and securing large volumes of structured, semi-structured, and unstructured data. It can store data in its native format and handle any conversion format regardless of size limitations.
Headline
Trend
An Approach that Combines Mathematical Optimization and Machine Learning
Machine learning (ML) is a type of artificial intelligence (AI) that allows businesses to make sense of large amounts of data and learn something. Through mathematical optimization, it can help to interpret the correctness of data and improve the decision-making basis of machine learning.
Headline
Trend
What are Mods and Modular Design?
Through modularization, a series of universal functional modules are designed, and these modules are selected and combined according to requirements to form products with different performances and specifications.
Headline
Trend
Understanding DevOps Corporate Culture and its Benefits
DevOps is an approach to corporate culture, automation, and platform design that enhances business value and resilience by delivering fast, high-quality services and relying on fast-paced and repeatable IT services.
Headline
Trend
Manufacturing Combines Augmented Reality and Virtual Reality to Create a Digital Reality Experience
Utilize industrial augmented reality technology and virtual reality to further improve employee productivity, efficiency, and customer satisfaction through real-time step-by-step work instructions.
Headline
Trend
How does AIoT Help Smart Transportation?
How can AI and IoT technologies assist pedestrians, traffic units, and police units to help smooth, convenient, and safe traffic?
Headline
Trend
The Importance of a Green Economy for Global Sustainable Development
The green economy is a necessary trend for the global status quo. Governments must also fundamentally reform their policies. It is not easy to achieve this goal, but if we want to move towards sustainable development, the green economy will become key.
Headline
Trend
What Is Artificial Intelligence? Future Trends
What is Artificial Intelligence (AI)? At present, in which life scenarios has artificial intelligence been used? How will it change the future? Artificial intelligence is the power of the new era. In the future, there will be no modern industries that have nothing to do with artificial intelligence. Artificial intelligence (AI) has illuminated the prospects of a new generation of technology. Since then, people have quickly used huge amounts of data to analyze and carry out machine learning. solution, leading to the best decision. How does this technology work and drive the development of other new technologies? What are the development trends of artificial intelligence?
Headline
Trend
Development Trends and Risks of Global Supply Chains
In response to the supply chain challenges brought about by the epidemic, the layout of the supply chain will become more resilient-oriented, that is, willing to sacrifice some of the high cost and efficiency indicators in exchange for the flexibility and resilience of supply chain management.
Headline
Trend
Post-Pandemic Era: New Trends in The Global Logistics Industry
The global logistics industry bears the brunt of the outbreak of the epidemic. In the early days of the epidemic, cities were closed, borders were closed, and flights were suspended, but at the same time, the demand for personal protective equipment and daily necessities also reached its peak. The surge in e-commerce shopping has put additional pressure on the global supply chain, and the recent delivery of vaccines has also added challenges to the supply chain. Life in the post-epidemic era is something the world is paying close attention to. What will the global logistics situation look like at that time? Of the innovations and shifts adopted during the pandemic, which ones will persist and impact international shipments? This article will answer them one by one.
Agree