6G Network Will Connect the World Faster
Trend

6G Network Will Connect the World Faster

To meet the innovative application needs of the next generation, while ensuring the best user experience and energy efficiency, MediaTek pointed out today that 6G will enable ubiquitous global network connectivity, and 6G data transmission rates will increase to 10 to 100 times that of 5G's, giving ultra-low latency that will match the requirements of advanced applications.
Published: Jan 26, 2022
6G Network Will Connect the World Faster

To meet the innovative application needs of the next generation, while ensuring the best user experience and energy efficiency, MediaTek pointed out today that 6G will enable ubiquitous global network connectivity, and 6G data transmission rates will increase to 10 to 100 times that of 5G's, giving ultra-low latency that will match the requirements of advanced applications.

Key technologies driving the development of 6G:

Three key technologies are required to drive 6G development: Artificial intelligence (AI), advanced radio frequency and optical technologies, and networking technologies.

  1. Artificial intelligence:
    AI has become one of the most popular research fields in many engineering disciplines. The biggest feature of 5G is the ability to greatly improve flexibility. 6G will use AI technology to further develop such flexibility. In the past, wireless research activities have led to the application of AI techniques in many fields, such as designing hand-off algorithms using neural networks and fuzzy logic.
    Although algorithms based on AI technology are rarely applied to wireless networks, for learning technologies (such as deep learning) or for new computing architectures, they can make such complex algorithms more practical. Great progress in algorithms has become the main force driving this trend. In the radio access network, core network, and applications, AI/cognitive technologies are widely used at each layer, and work best in combination applications. This adaptability helps improve network resilience and helps reduce operating and maintenance costs.
    Optimizing components through tuning adjusting in response to environmental interference or circuit aging/misalignment effects is a benefit of RF. By flexibly adjusting modems and protocols, spectrum management and demodulation can be enhanced, especially in the presence of heterogeneous interference. With the advent of spectrum sharing technology, federated learning technology can use each mobile device as a sensor, which facilitates a comprehensive but in-depth exploration of interference and coverage issues in large areas. Using AI to find suitable information routing mechanisms, including the use of satellite or terrestrial wireless relay technology, can develop more complete front haul and backhaul network support mechanisms.
    There are studies on how to use AI in the core network for system optimization, coordination, and maintenance. Adversarial learning is when AI cyber attackers and AI cyber defenders compete to find vulnerabilities and solutions. The use of adversarial learning can continue to improve overall AI-RAN (Artificial Intelligence and Radio Access Networks) security. At the application level, AI can predict background context and application information needs, as well as preset network parameters based on estimated information flow.
  2. RF and Optical Technology:
    A key driver of 5G technology has been the low-cost production of mmWave devices in recent years and the abundance of spectrum available in mmWave bands. This trend is expected to continue, with higher frequency and more energy-efficient installations emerging. Ultimately, this technology trend may improve the economic viability of terahertz (THz) communications. A single wafer can accommodate an entire phased array. If wireless power transfer is used, such phased array chips can communicate without external power pins. Another driving factor is the flexibility of RF components. These technologies are based on Field Programmable Gate Arrays (FPGAs) to create very small radio systems. 40 GHz in various frequency bands.
  3. Internet technology:
    6G network technology will follow SDN (Software-defined networking), NFV (Network functions virtualization), and network slicing technology. However, 6G may take these concepts to the extreme, customizing network slicing according to individual needs and applications, thereby providing users with a truly customized quality experience. Such systems using personalized network slicing are bound to use edge computing technology on a large scale and will form a fairly complex network responsibility distribution model between the core network and edge computing nodes.
Feasible 6G performance goals:

6G uses a variety of metrics, including general specifications for data transfer rates, latency, and availability. 6G will continue the trend that started with 5G, and through Quality of Experience (QoE), data transfer rates will increase, perhaps reaching the level of 1 TB per second. The time delay may be reduced to tens of milliseconds. In addition, age-of-information can be used to indicate the order of information by date, so that information can be processed in order of priority.

In the 5G era, reducing power consumption has been set as a goal, hoping to make the battery life of IoT devices up to 10 years, and perhaps further reduce power consumption in the future to facilitate energy harvesting, including backscatter communication. 6G may also include metrics and standards for energy harvesting and wireless power transfer requirements. 6G standards may also include security resilience metrics, especially given that quantum computing has the potential to break most encryption standards after 6G is implemented.

6G system design principles:

Simplexity, Optimization, and Convergence (S.O.C.) are the possible development directions of the 6G standard, which will accelerate the digital transformation and sustainable development of society.

  • Simplexity:
    To take into account high-performance requirements and excellent user experience, the 6G standard should simplify the design of traditional communication networks, and only retain the necessary complexity in exchange for higher system performance (such as support for different types of devices, wider spectrum range, spectrum properties adaptation), multi-network integration, etc.), strike a balance between complexity and simplicity, and on this basis respond to the global trend of energy conservation and carbon reduction, and optimize unit energy consumption.
  • Optimization:
    6G system optimization must be user experience-oriented so that both network providers and consumers are satisfied. System designers will optimize from three new key directions, namely wireless network heterogeneous architecture integration (providing networking resources with maximum efficiency), communication network intelligence (systematic optimization of communication networks with AI), and support for individual application scenarios the cross-layer design (directly provide the basic functions required by users, in place at one time).
  • Convergence:
    The fusion concept includes full-band access support, a fusion between devices/equipment and network nodes, the fusion of multiple wireless access technologies, a fusion of terrestrial and non-terrestrial networks, and comprehensive fusion of communication, perception, and computing, maximizing technology economies of scale to overcome challenges such as coverage and energy efficiency.

6G future five trends:

  1. The market's demand for communication system performance will further increase to support applications with higher requirements, such as holographic communication, tactile communication, digital twin, avatar, telepresence, and other technologies.
  2. Data transmission rates will increase to 10 to 100 times that of 5G, with ultra-low latency to meet the needs of advanced applications.
  3. Use the 7-24GHz and Sub-THz frequency bands to increase the Total Addressable Bandwidth to more than 50GHz. The addition of these two new frequency bands will be a strong foundation, paving the way for new extreme applications.
  4. Network densification is imperative to increase capacity in low-frequency bands and overcome the problem of propagation attenuation in new frequency bands. Due to fundamentally different physical properties, indoor base station deployment costs and other feasibility issues and challenges require a different approach than 5G.
  5. Achieve ubiquitous global network connectivity, including remote areas that are not currently covered by cellular networks technology.

Outlook for 6G technology:

5G Phase 1, or R15, provides a fairly solid foundation for enhancing subsequent releases by defining a high-performance new air interface (NR) and a resilient network architecture. R16 and subsequent releases focus on new verticals, hoping to greatly expand the application of wireless communication. R16 and subsequent versions will expand the supported services beyond the eMBB (Enhanced Mobile Broadband)-based R15. 5G LANs can replace or augment fixed or wireless LANs, as well as provide flexibility and enhanced performance.

In non-terrestrial networks, satellites use 5G to make services universal, continuous, and scalable. Important medical applications can deliver healthcare improvements and cost savings thanks to the performance provided by 5G. The development of 5G technology enables novel V2X (Internet of Vehicles) applications such as platooning, advanced driving, and remote driving. UAVs powered by 5G technology can support a wide variety of scenarios, including delivering medical supplies in the event of a disaster.

5G technology can assist audiovisual production services in and out of the studio. Network entity control applications can use 5G technology to implement Industry 4.0 on a large scale. NR-based positioning technology supports numerous use cases, including emergencies, UAV operations, AR/VR/XR, and factory automation. Haptic communication uses tactile sensing technology to elevate the user experience to a whole new level.

6G will take the user experience to a whole new level and revolutionize many industries. 6G may feature data transfer rates around 1 terabyte per second, latency in the order of milliseconds, and device and network energy efficiency. High-fidelity holographic projection communication and multi-sensory communication may become part of our daily life. Industries such as healthcare, manufacturing, entertainment, and transportation are being impacted by 5G, and in the 6G era, industries will experience a larger-scale transformation.

Published by Jan 26, 2022 Source :bnext

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree