The Future of Electrification Comes from the Development of the Wireless Power Industry
Trend

The Future of Electrification Comes from the Development of the Wireless Power Industry

The wireless power industry is expected to grow exponentially. Wireless power has a major impact on almost all fields because it enables the Internet of Things to achieve and develop faster.
Published: Dec 17, 2021
The Future of Electrification Comes from the Development of the Wireless Power Industry

What is wireless power transmission technology?

Wireless power transmission, also known as non-contact power transmission, refers to the conversion of electrical energy into other forms of relay energy (such as electromagnetic field energy, lasers, microwaves, and mechanical waves.

Wireless power transmission is the direct transmission of electrical energy (electricity) from the power supply equipment to the electrical device without wires or conductors. It can be used to charge a battery for electrical storage or for direct operation. Wireless transmission can usually use electromagnetic field coupling effects, including Inductive Coupling and Resonant Coupling. Broadly speaking, all radio wave propagation is a kind of energy transmission. The difference lies in the higher efficiency and power of wireless transmission.

The wireless transmitter can safely supply power to the receiver embedded in almost any device, similar to the way Wi-Fi sends data. Devices such as IoT sensors, temporary trackers, smartphones, game controllers, smartwatches, etc. can be equipped with receivers and send signals to the transmitter which can safely receive power at a distance.

What is the transmission principle of wireless power?

  1. Contact charging technology:
    Using the principle of electromagnetic induction, this non-contact charging technology is increasingly widely used in many portable terminals. In this type, two coils are placed in adjacent positions, and when current flows in one coil, the generated magnetic flux becomes a medium, causing an electromotive force to also be generated in the other coil.
  2. Microwave energy transmission technology:
    Microwave energy transmission applies the principle that electromagnetic wave energy can be sent and received through an antenna. Microwave energy transmission is to focus the microwaves and emit them in a controlled direction. At the receiving end, the received microwave energy is converted into DC power through a rectenna (rectifying antenna).
  3. Resonance technology:
    The resonance method using electromagnetic fields is widely used in the electronic field. However, the power supply technology does not use electromagnetic waves or currents, but only uses electric fields or magnetic fields.
Advantages of wireless power, Removing regulatory obstacles:

Development trends impacting the future of wireless power include progress made in supervision of the industry. As a result, many wireless power applications are already improving efficiency, safety, and convenience.

Wireless power supply technology can transmit power through the air over long distances without sight, clearing key regulatory obstacles and paving the way for a wide range of consumer and industrial applications. In the United States, the FCC has issued several certifications for a patented technology that can provide wireless power safely and effectively. The RF-based non-line-of-sight wireless power long-distance technology can transmit power without limitation.

Application of wireless power supply:

  • How will wireless power change logistics?
    With regulatory approval, the wireless power industry has begun to provide enterprises with new choices. For example, the tracking system of truck trailers uses wireless power supply technology to effectively help the world's largest retailer save money and improve safety in busy distribution centers.
    There are endless applications for transportation and logistics, retail, and almost any enterprise or consumer use case. Sensors that can track the location of pallets or containers over long distances without manual intervention will bring change in global supply chains. Sensors can not only track location but also provide information about conditions (such as temperature and humidity) and handling (such as whether an item has fallen). This may drastically change the distribution of perishable and/or fragile items. When conditions change and items need to be moved, sensors can alert warehouse or retail personnel without the electrical infrastructure required by wired sensors.
  • How will wireless power change healthcare?
    Wireless power can also transform healthcare, freeing patients from the wires that currently need to power many devices that collect critical health data and alert caregivers when vital signs change. Using wirelessly powered devices can improve patient compliance by eliminating bulky batteries and allowing patients to wear the device anywhere.
    In healthcare applications, wireless power supplies that support real-time data transmission can allow nursing teams and/or hospital systems to analyze information immediately, and can also establish an alarm system. When a patient’s vital signs change and immediate action is required, messages are automatically sent to patients, employees, family members, and emergency personnel.
  • How will wireless power change the consumer sector?
    A wireless power supply has the potential to alleviate many consumer concerns. In the case of mobile phones, batteries can be encased, so do not need a wire for charging. In the future consumers will also be able to power their smart homes and personal gadgets through wireless transmission of power. Indoor wireless cameras, air quality and temperature display devices, smart trackers in the home can all be automatically charged. Smartwatch can be worn that do not need to be taken off to charge, enabling people to collect data on such things as sleep habits and fitness activities.
    Another potential use is in the game industry. Game controllers that can be powered without wires and heavy batteries can allow game developers to focus on enhancing experience and adapting to the player's actions. There are currently nearly 3 billion gamers in the world, and this number is still growing, so this is a huge market that can accept wireless power to drive innovation.
    Unmanned Aerial Vehicle (UAV) technology is also a commodity that benefits from wireless power. Whether it is for home enthusiasts who want to keep drones powered during the flight, or using drones in commercial environments (such as warehouses), eliminating heavy batteries will allow the miniaturization of drones and extend the distance that they can fly. The development of wireless power technology is expected to solve many functional problems.

Prospects of wireless power tech supply:

Wireless energy has made great progress in a short period, and the industry will develop in an unprecedented way. The global development of wireless charging-related application technologies is mostly limited to low-power application markets such as consumer electronics and smartphones, as the transmission efficiency is still low. Newly developing, high-power wireless power transmission technologies can be applied to non-contact charging applications such as unmanned aerial vehicles, unmanned ships, unmanned vehicles, and unmanned guided vehicles. Ultra-high conversion efficiency will have great commercial value. Look for wireless power in the future to unleash the full potential of the Internet of Things and inspire innovations across businesses, healthcare, and consumer product development.

Published by Dec 17, 2021 Source :iot-now

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
The AI Revolution in Healthcare: Redefining the Future of Medicine
The explosive rise of artificial intelligence (AI) is ushering in an unprecedented transformation within the healthcare industry. No longer just a data analysis tool, AI has evolved into a smart assistant capable of deep collaboration with human experts and even operating independently. From diagnostic assistance to personalized treatment plans, AI is making healthcare more efficient, precise, and accessible to every patient.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Agree