Motion Control Systems in Factory
Knowledge

Motion Control Systems in Factory

Motion control encompasses every technology related to the movement of objects. Motion control is also referred to as Servo Control or Robotics and is implemented in industrial processes to move specific loads in a controlled way. It is the core technology of factory automation and is the real-time management of the position and speed of mechanical moving parts according to the expected motion trajectory and specified motion parameters.
Published: Aug 18, 2022
Motion Control Systems in Factory

Motion control is the core technology of factory automation, which originated from the early servo control. Simply put, motion control is the real-time management of the position and speed of mechanical moving parts, so that they can move according to the expected motion trajectory and specified motion parameters.

This technology can be applied to industrial machinery and high-precision CNC machine tools that require precise positioning control or speed control. In industries that require high product cutting precision, a well-functioning motion control system is indispensable, such as: automobile, solar energy, semiconductor, electronic industry, etc.

The establishment of the motion control system must integrate various software and hardware technologies, which not only requires theoretical performance evaluation, but also considers the operating characteristics of the machine itself in actual operation. Whether the operation of the industrial machine can be carried out, in addition to the system The basic functional requirements include controlling the position and speed of each axis. Cost, system stability, frequency of use, warranty service, scalability and compatibility with other software and hardware are all factors to evaluate motion control systems.

Motion control system in recent years, with the development of the Internet, different operation modes have been developed. Machines and equipment can be connected to the whole plant equipment for real-time monitoring and manipulation during operation. The PLC motion control mode in the past was due to PLC controllers are also gradually replaced by PC-Based controllers.

If the controller is divided by structure, the controllers currently seen in the industry can be roughly divided into two types: PLC-Based and PC-Based. PLC-based technology and PC-based technology are two representative control technologies in the field of automatic control, and the technology origin and development of the two are quite different.

PLC was produced in the early 1970s, and its main functions are only simple logic sequence control functions. Once the PLC appeared, it showed strong vitality with its high reliability, small size and intuitive programming mode, and became the mainstream product in the field of automatic control.

PC-based is more used for monitoring the running status of equipment. Compared with PC-based, PLC-based has the advantages of flexible configuration, small size, adaptability to harsh environments, strong anti-interference, and high reliability, but it is worse than PC-based in terms of software functions and system openness.

With the continuous development of computer technology and control technology, PLC-based and PC-based are absorbing each other's advantages to adapt to more applications. For example, the application of PLC in packaging equipment is far more than the application of PC-based in packaging equipment. PC-based is a control system based on PC technology.

The earliest PC-based control system is based on the industrial computer, and PC-based has advantages in computing, storage, and software openness. There are obvious differences in technical characteristics between PLC-based and PC-based. PLC has small size, low power consumption and strong anti-interference ability; it has high reliability, and its average failure rate interval can reach 500,000 or even 1 million hours; it has a simple and intuitive programming mode.

And PC-based has powerful computing power and has open standard system platform and PCI interface, beautiful and low-cost display technology. But the reliability of the system is slightly worse, for example, the average time between failures of IPC with better performance is about 50,000 hours. However, with the advent of the PC and network era, industrial PC or PC-based controllers have gradually replaced the active industrial automation in the past due to the basic characteristics of network systems, that is, high performance, low price, system openness, and basic advantages. PLC in the control area.

Because PC-based products have the basic characteristics of the network, PC-based controller products have strong vitality and develop rapidly as soon as they come out. Some people say that PC-based controllers will replace traditional PLC-based controllers. Of course, security and stability issues must be resolved first.

In recent years, these problems have been basically solved, and PC-based controllers can be similar to PLC-based controllers in terms of appearance and reliability. The introduction and widespread adoption of the IEC61131-3 programming language standard has paved the way for the rapid development of PC-based controllers. In this way, PC-based controllers not only have the advantages of PC, but also have the advantages of traditional PLC. It can be seamlessly integrated into the information system of the Internet age.

With the advancement of PCs and networks, many applications related to digital systems have also advanced rapidly. Microcontrollers with high-speed computing speed such as single-chip and digital signal processors are continuously introduced into the distributed control system, which makes various application systems gradually move towards the trend of professional division of labor. Among them, the motion control system is a good case.

Published by Aug 18, 2022 Source :DIGITIMES

Further reading

You might also be interested in ...

Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Headline
Knowledge
How CNC Technology Ensures the Invisible Safety of Flight
The aerospace industry demands extremely high standards for component precision, lightweight design, and durability, and CNC (Computer Numerical Control) technology is a key enabler to meet these requirements. It is widely used in the production of critical parts such as turbine blades, airframe structures, and landing gear. With the global aerospace market expected to grow from USD 900 billion in 2023 to USD 1.2 trillion by 2030 (CAGR ~4.2%), CNC technology, with its micron-level precision and automation capabilities, not only helps improve aircraft fuel efficiency by around 10% but also ensures all components comply with the stringent AS9100D certification standards, making flight safer and more reliable.
Headline
Knowledge
Why Are Smartphones Getting Thinner Yet More Drop-Resistant?
Have you ever wondered why smartphones are becoming increasingly thinner? Driven by user convenience and portability, devices are shrinking while still retaining the functionality of previous generations, or even upgrading it, all while becoming lighter and slimmer. The key behind this lies in CNC (Computer Numerical Control) machine technology, which plays a central role in consumer electronics manufacturing. The consumer electronics industry encompasses smartphones, laptops, wearable devices (such as smartwatches), and various household appliances. These products demand extremely high standards for aesthetic design, structural precision, and functional performance. CNC technology is primarily applied in precision component machining, casing production, thermal management components, and customized designs.
Headline
Knowledge
When Car Windows Meet Technology: Beyond Isolation—Protection, Intelligence, and Electrification
Traditionally, a car window’s main function is to shield occupants from wind and rain. Today, however, modern automotive windows have evolved to incorporate multiple convenience and safety features. High-end vehicles often feature acoustic glass, which uses multi-layer structures with sound-dampening films to effectively block wind and road noise, allowing passengers to enjoy a quiet cabin even at high speeds. Meanwhile, tempered glass undergoes specialized manufacturing processes to ensure that, upon impact, it shatters into small, uniform pieces, reducing the risk of injury and complying with the latest safety regulations. This integration of precision engineering relies heavily on CNC (Computer Numerical Control) machinery. From maintaining uniform glass thickness and precise curvature to ensuring perfect adhesion between layers, even the slightest deviation can compromise noise insulation, thermal performance, and safety. Automakers therefore demand exceptionally high-quality standards from window manufacturers, as these components directly impact brand image and, more importantly, driver and passenger safety.
Headline
Knowledge
Soft PE/PP Waste Recycling Technology in the Circular Plastic Economy
Soft polyethylene (PE) and polypropylene (PP) waste are widely used in modern plastic industries, including packaging films, agricultural coverings, garbage bags, and logistics materials. Due to their high usage volume and recycling challenges, the effective recovery and processing of these materials have become a critical aspect of sustainable plastic management.
Headline
Knowledge
Machine Tool Lubrication and Cooling Systems: Components and Technologies
Machine tools are the cornerstone of modern manufacturing, enabling precise cutting, forming, and machining of metals and other materials. During operation, these machines generate significant friction and cutting heat, which, without proper management, can lead to tool wear, workpiece deformation, and reduced machining accuracy. Lubrication and cooling systems are essential for mitigating these issues, with lubrication reducing friction and wear, and cooling dissipating heat to maintain thermal stability. Together, these systems enhance machining efficiency, extend equipment lifespan, and improve surface quality. Research indicates that effective lubrication and cooling can boost machining performance by up to 30%. This article explores the critical components—lubrication pumps, pipes, coolant pumps, and filters—while highlighting advanced techniques and future trends.
Agree