Motion Control Systems in Factory
Knowledge

Motion Control Systems in Factory

Motion control encompasses every technology related to the movement of objects. Motion control is also referred to as Servo Control or Robotics and is implemented in industrial processes to move specific loads in a controlled way. It is the core technology of factory automation and is the real-time management of the position and speed of mechanical moving parts according to the expected motion trajectory and specified motion parameters.
Published: Aug 18, 2022
Motion Control Systems in Factory

Motion control is the core technology of factory automation, which originated from the early servo control. Simply put, motion control is the real-time management of the position and speed of mechanical moving parts, so that they can move according to the expected motion trajectory and specified motion parameters.

This technology can be applied to industrial machinery and high-precision CNC machine tools that require precise positioning control or speed control. In industries that require high product cutting precision, a well-functioning motion control system is indispensable, such as: automobile, solar energy, semiconductor, electronic industry, etc.

The establishment of the motion control system must integrate various software and hardware technologies, which not only requires theoretical performance evaluation, but also considers the operating characteristics of the machine itself in actual operation. Whether the operation of the industrial machine can be carried out, in addition to the system The basic functional requirements include controlling the position and speed of each axis. Cost, system stability, frequency of use, warranty service, scalability and compatibility with other software and hardware are all factors to evaluate motion control systems.

Motion control system in recent years, with the development of the Internet, different operation modes have been developed. Machines and equipment can be connected to the whole plant equipment for real-time monitoring and manipulation during operation. The PLC motion control mode in the past was due to PLC controllers are also gradually replaced by PC-Based controllers.

If the controller is divided by structure, the controllers currently seen in the industry can be roughly divided into two types: PLC-Based and PC-Based. PLC-based technology and PC-based technology are two representative control technologies in the field of automatic control, and the technology origin and development of the two are quite different.

PLC was produced in the early 1970s, and its main functions are only simple logic sequence control functions. Once the PLC appeared, it showed strong vitality with its high reliability, small size and intuitive programming mode, and became the mainstream product in the field of automatic control.

PC-based is more used for monitoring the running status of equipment. Compared with PC-based, PLC-based has the advantages of flexible configuration, small size, adaptability to harsh environments, strong anti-interference, and high reliability, but it is worse than PC-based in terms of software functions and system openness.

With the continuous development of computer technology and control technology, PLC-based and PC-based are absorbing each other's advantages to adapt to more applications. For example, the application of PLC in packaging equipment is far more than the application of PC-based in packaging equipment. PC-based is a control system based on PC technology.

The earliest PC-based control system is based on the industrial computer, and PC-based has advantages in computing, storage, and software openness. There are obvious differences in technical characteristics between PLC-based and PC-based. PLC has small size, low power consumption and strong anti-interference ability; it has high reliability, and its average failure rate interval can reach 500,000 or even 1 million hours; it has a simple and intuitive programming mode.

And PC-based has powerful computing power and has open standard system platform and PCI interface, beautiful and low-cost display technology. But the reliability of the system is slightly worse, for example, the average time between failures of IPC with better performance is about 50,000 hours. However, with the advent of the PC and network era, industrial PC or PC-based controllers have gradually replaced the active industrial automation in the past due to the basic characteristics of network systems, that is, high performance, low price, system openness, and basic advantages. PLC in the control area.

Because PC-based products have the basic characteristics of the network, PC-based controller products have strong vitality and develop rapidly as soon as they come out. Some people say that PC-based controllers will replace traditional PLC-based controllers. Of course, security and stability issues must be resolved first.

In recent years, these problems have been basically solved, and PC-based controllers can be similar to PLC-based controllers in terms of appearance and reliability. The introduction and widespread adoption of the IEC61131-3 programming language standard has paved the way for the rapid development of PC-based controllers. In this way, PC-based controllers not only have the advantages of PC, but also have the advantages of traditional PLC. It can be seamlessly integrated into the information system of the Internet age.

With the advancement of PCs and networks, many applications related to digital systems have also advanced rapidly. Microcontrollers with high-speed computing speed such as single-chip and digital signal processors are continuously introduced into the distributed control system, which makes various application systems gradually move towards the trend of professional division of labor. Among them, the motion control system is a good case.

Published by Aug 18, 2022 Source :DIGITIMES

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree