What is a Smart Sensor?
Knowledge

What is a Smart Sensor?

The development of smart sensors can be a high degree of integration of mechanical, electrical, software/firmware, circuit, and sensor knowledge.
Published: Dec 14, 2022
What is a Smart Sensor?

Smart sensing and control commonality technology includes a sensor, software, and drive control component system. The purpose is to combine sensors with AIoT and widely deploy them in equipment, production lines, robots, and factory environments to promote product innovation, thereby increasing automation and creating a smart factory environment to specifically solve the problem of labor/productivity shortage. Relevant sensing, software, and control technologies can specifically promote product innovation, increase automation, create a friendly environment for smart factories, promote the evolution of employee care and capabilities, and integrate situational goals with local self-made and virtual reality.

What is a Smart Sensor?

Smart sensors can be called intelligent sensors, or edge sensors. General sensors convert physical phenomena into voltage or current through the material, optical, mechanical, or chemical reactions. These physical phenomena include changes in temperature, sound, vibration, and displacement. In measurement applications, engineers and scientists can use instruments or data acquisition systems to convert analog voltage and current signals from sensors into digital signals that can be calculated by computers for subsequent analysis and presentation. Due to the popularity and miniaturization of embedded systems, some sensor manufacturers have integrated embedded systems and sensors and used the processing capabilities of embedded systems to perform real-time signal processing, judgment, or control functions. Through the combination of sensors and equipment, it develops towards intelligent high-end equipment and seizes the smart machinery market of intelligent unmanned factories and supply chain restructuring.

What is the Difference Between Smart Sensors and Ordinary Sensors?

Convergence with embedded systems, covering the following elements:

  • Microcontroller or CPU
  • Memory or SD card
  • Wireless communication
  • Power supply or battery

What are the Advantages and Disadvantages of Smart Sensors?

A smart sensor is an electromechanical system that uses a microprocessor as the core to expand peripheral components. Compared with ordinary sensors, smart sensors bring many benefits, but because the system is more complex, it also requires more development time.

Application advantages of smart sensors:
  • Can provide an immediate response, such as for security or disaster prevention purposes.
  • Carry out self-diagnosis, immediately detect whether the sensor is abnormal or not, and give a warning.
  • Analyze the data directly at the front end, without waiting for the data to be sent back to the computer for calculation.
  • Perform data compression to reduce the amount of subsequent data transmission.
  • Perform machine learning or AI algorithms and directly optimize parameters.
  • Wireless communication reduces wiring costs.
  • High stability, durability, easy maintenance, and real-time computing.
Application disadvantages of smart sensors:
  • R&D time and costs are required.
  • The production process is more complicated.
  • Maintenance costs are high.
  • Power consumption considerations.
  • If connected to the Internet, network stability needs to be considered.

Challenges in the Design of Smart Sensors:

  • Design considerations for power saving and low power consumption: If a smart sensor needs to perform more complex calculations, its power consumption will inevitably increase. How to strike a balance between performance and power consumption is an important design key.
  • Sensor integration and signal processing: The most different point between smart sensors and general embedded systems is that they need to integrate sensor signals. The A/D conversion circuit designed on the embedded system is a key point. In small applications, the placement of electronic components is dense, so signal stability and noise must be paid attention to.
  • Maintain reliability: Whether it is an indoor or outdoor application, smart sensors need to be designed with reliability as the premise. If it breaks down or needs to be repaired frequently, this will cause a large maintenance burden.

What are the Application Cases for Smart Sensors?

  • Tire Pressure Monitor (TPMS): Tire pressure monitors are now one of the standard equipment for vehicles. This type of sensor must be installed on the tire valve to capture tire pressure data, but the space is limited and there are High-speed rotating tires that obviously cannot be embedded in traditional sensing architectures. But the technologies such as power supply, sensing, and communication have matured one after another, such applications are already feasible. This smart sensor pursues stable and accurate wireless measurement, and these items are realized in the application of TPMS tire pressure detection.
  • Tool life detection: A common application is the tool life detection of machine tools. During the operation of machine tools, the tools responsible for cutting objects are easily damaged, and damaged tools will directly affect product quality. In the past, manufacturers used the status information of the tool grasped through the sound, vibration, and other information when the machine is running. Like the tire pressure detector, the space of the tool sensor is small and the shape is specific, so it is difficult to introduce the traditional measurement framework.
  • Mechanical status monitoring: As the use time increases, rotating mechanical equipment will inevitably suffer from wear and damage. But in industrial applications or factory domains, these devices are often located in places where it is difficult to install instruments, such as high-temperature steel plants, or even moving trucks. Smart sensors can integrate vibration measurement and analysis into a small wireless device, which allows users to directly transmit device status data to mobile phones or computers without using bulky instruments.

The Future Trend of Smart Sensors?

The Internet of Things is becoming fragmented, and the market demand for customized measurement is increasing. The advantage of a smart sensor comes from its ability to directly process and analyze signals. Therefore, when embedded system technology evolves with Moore's Law, the processing capability of embedded systems will become stronger and stronger. In the past, if complex calculations were to be performed, the original sensor signals could only be transmitted to the subsequent computer to obtain the analysis results. When the processing power of the front-end embedded system is stronger, many calculations can be performed directly on the signal side, which saves the bandwidth required for data transmission, and allows the on-site users to get the calculation results immediately. In addition, because of the improved processing capabilities of embedded systems, the applications of machine learning and artificial intelligence in recent years, such as IoT and AIoT data computing and model training, can be used in more fields through smart sensors.

Smart sensing technology is used in the manufacturing industry, using vibration, sound, force, image, distance, etc., to sense and integrate AI and edge/Cloud Computing to implement intelligent manufacturing. Various vibration sensing technologies can be developed and embedded in the composite processing machine to measure the vibration and determine the reasons for the decline in processing quality and premature deterioration of the machine. Or embed force sensing technology in wearable robots to read the body's tiny potential signals to assist factory employees in carrying heavy objects and avoid potential occupational injuries. Or embed various 3D sensing and ranging technologies in collaborative robots and autonomous mobile robots to implement the robot's fine-grained hand-eye collaboration, fast inspection, transportation, and measurement functions, improve production line operations and logistics efficiency, and ensure factory safety.

Published by Dec 14, 2022 Source :tenet

Further reading

You might also be interested in ...

Headline
Knowledge
Do You Know About Selective Laser Sintering 3D Printing?
Selective laser sintering is an additive manufacturing technology that sinters small particles of polymer powder into a 3D three-dimensional structure through high-power laser light; thus, this is also called selective laser sintering 3D printing, or SLS 3D printing.
Headline
Knowledge
Quick Guide About Automated Guided Vehicle (AGV)
During the operation of a factory, the flow of materials determines the production efficiency of the factory. Recently, production lines have gradually added automation equipment, but the supply or handling of materials to and from the production line still relies on manual handling operations. This often results in unsmooth logistics and interrupted production flow. To avoid interruptions in supply, and reduce storage and production space, Automated Guided Vehicle (AGV) technology offers an unmanned management solution.
Headline
Knowledge
Types of Plastic Manufacturing Processes
Plastic products can be seen everywhere in daily life, and different plastic products are made through different processing techniques. Plastics manufacturing is the process of making plastic into semi-products or products with practical value. Plastics manufacturing usually includes primary processing and secondary processing of plastics.
Headline
Knowledge
Do You Know About Semiconductor Supply Chain?
Semiconductor supply chain include all kinds of semiconductor manufacturing and design industries, such as IC manufacturing, IC packaging and testing, IC design, and discrete component manufacturing.
Headline
Knowledge
What Are the Different Types of Electric Linear Actuators?
With the continuous development of the downstream industry of linear actuator and the continuous expansion of linear actuator applications, the global demand for linear actuator has shown a rapid growth. In 2019, the global linear actuator market has exceeded 15 billion yuan.
Headline
Knowledge
What Are the Common Types of Plastic Machinery in the Plastics Industry?
Plastic molding processing technology has been widely used in the production of many high-tech products, such as auto parts, 3C electronic products, connectors, displays, mobile phones, plastic optical lenses, biomedical application products, and general daily necessities, etc. With the trend of diversification of product usage and variability in functional requirements, plastic molding processing technology is booming day by day.
Headline
Knowledge
What Is the Structure of A Milling Machine?
Milling machines provide support to the manufacturing industries. The milling machines can perform almost every milling operation like gear milling, thread milling, angular milling, etc.
Headline
Knowledge
What Is It About Stamping Press Machines?
A stamping press machine is a machine that can process sheet metal into the desired shape. It is commonly used for metal stamping to convert a flat metal sheet into a specific shape. What are the types of punching machines? Let's dig it out!
Headline
Knowledge
What is an Oscilloscope?
An oscilloscope is a diagnostic instrument that graphs electrical signals. Whether it is a simple or complex product, it includes electronic components, and its design, verification, and the debugging process require an oscilloscope to analyze the many electrical signals that make the product wake up.
Headline
Knowledge
What is Heat-assisted Magnetic Technology?
Heat-Assisted Magnetic Recording (HAMR) is a technology that uses laser heat to first heat highly stable media to assist in the magnetic recording of data.
Headline
Knowledge
Key Components of Automotive Semiconductors: ECU, MCU and Sensor
The automotive semiconductor market continues to be optimistic. At present, the main automotive semiconductor chips include microcontrollers (MCU), power management ICs, digital signal controllers (DSP), sensors, power semiconductors, discrete components, micro-electromechanical (MEMS), memory, customized application IC (ASIC), etc. The automotive chip supply chain is complex and long. After the shortage storm in 2021, automakers began to shorten the semiconductor supply chain, hoping to shorten the long chain. Some automakers even have the idea of developing and designing automotive semiconductors by themselves.
Headline
Knowledge
What is Sheet Metal Processing?
"Sheet metal" in sheet metal processing refers to thin metal plates, which can be processed by stretching, stamping, bending, etc., and the thickness is usually less than 6mm. Common materials include iron plates (black steel SPHC, cold-rolled steel SPCC, galvanized steel SECC), hot-dip galvanized steel sheet SGCC), stainless steel (SUS304, SUS316), aluminum (AL5052), copper, etc. Sheet metal processing is different from other processing technologies. It includes many different steps, such as: laser cutting, NCT punching, cutting, folding, welding, riveting, etc. The specific products produced are usually support frames, equipment covers, internal parts and some functional objects, such as electronic control panels, medical equipment covers, airport automatic clearance machine covers or parts, snapshot cabinets, food processing equipment covers and parts.
Agree