What is Machine Vision?
Knowledge

What is Machine Vision?

Machine vision uses the latest artificial intelligence technology to enable industrial equipment to observe and analyze tasks in smart manufacturing, quality control and labor safety, thereby improving product quality, reducing costs and optimizing operations.
Published: Dec 08, 2022
What is Machine Vision?

What is Machine Vision?

Simply put, machine vision technology gives industrial equipment the ability to "see" what it's doing and make quick decisions based on what it sees. The most common uses of machine vision are visual inspection and defect detection, locating and measuring parts, and identifying, sorting and tracking products.

Machine vision is one of the basic technologies of industrial automation. It has been helping improve product quality, speed up production and optimize manufacturing and logistics for decades. Now, this proven technology is merging with artificial intelligence and leading the transformation towards Industry 4.0.

The Origins of Machine Vision: Traditional Machine Vision Systems

Long before the advent of artificial intelligence and machine learning, machines had the ability to "see". In the early 1970s, computers began to use specific algorithms to process images and identify basic features. This traditional machine vision technique detects object edges to locate parts, finds defective color variations, and distinguishes blobs of connected pixels with holes.

The operation of traditional machine vision is relatively simple and does not require artificial intelligence. Text must be as concise and legible as a barcode. Shapes must be predictable and conform to exact styles. Traditional machine vision systems can't read handwriting, read wrinkled labels, or tell apples from oranges.

Nonetheless, traditional machine vision has had a huge impact on manufacturing. Because machines don't get tired, they can spot defects faster and more reliably than the human eye. In addition, machines are not limited by human vision. Dedicated machine vision cameras use thermal imaging to detect heat anomalies, and X-rays to find microscopic defects and metal fatigue.

The Rise of Artificial Intelligence: Deep Learning Inference and Industrial Machine Vision

Increasingly powerful edge computing (the edge of the network and other embedded and IoT devices), coupled with a growing number of artificial intelligence (AI) deep learning models, is greatly expanding the capabilities of machine vision. Rapidly growing capabilities are leading the transformation towards smart factories and Industry 4.0.

AI augments traditional computer vision algorithms through models called neural networks. When a computer receives an image or a video stream of images, machine vision software compares the image data to the neural network model. This process, known as deep learning inference, allows computers to identify extremely subtle differences, such as tiny incongruous patterns in fabrics and microscopic defects in circuit boards.

In order to improve accuracy and speed, data scientists build specific neural network models for specific applications. In a process called supervised training, the computer looks at thousands of examples and looks for meaningful patterns, including ones that humans might not detect.

Some models can detect dead and discolored pixels in displays, look for voids in solder joints, and pinpoint loose threads on fabrics. Of course, more models will be continuously developed and improved.

Smart Machine Vision and Autonomous Systems

AI is extending machine vision beyond visual inspection and quality control. Through machine vision, robots can sense in three dimensions, hold each other's parts, and check each other's work. They can even interact with their human colleagues and make sure they work together safely.

Machines with intelligent vision can use natural language processing to read labels and interpret signs. Robots with machine vision can understand shape, calculate volume, and perfectly pack boxes, load trucks, and even shipping containers without wasting space.

Moving from machines that can automate simple tasks to autonomous machines that can go beyond what the human eye sees and thinks, taking longer to optimize each component, will push industrial innovation to a whole new level.

It sounds like science fiction, but today, intelligent machine vision is at work in factories, warehouses and shipping centers, assisting and assisting workers by handling everyday tasks, allowing them to use their expertise and focus on what matters most.

Machine Vision Application

Industrial machine vision is the foundation of smart manufacturing, logistics and operations. Machine vision cameras, embedded IoT sensors, and industrial computers can bring intelligence, analysis, and efficiency to every step of the manufacturing process.

Advantages of Machine Vision in Operations

Improving worker health and safety is a key benefit of applying machine vision to operations. Computers powered by artificial intelligence ensure workers maintain social distancing and wear proper safety equipment. Robots and equipment with machine vision can understand and interact with humans to help prevent accidents before they happen. They can warn operators or automatically shut down equipment if conditions are unsafe, reducing risk to employees and your business.

In addition, by continuously analyzing data from cameras, microphones and sensors embedded in industrial equipment and machines, industrial computers can use artificial intelligence to detect failures and signs of wear and tear before failures occur, thereby enabling preventive maintenance to be planned in advance, This in turn eliminates unplanned downtime and spreads maintenance costs over time.

In asset management and security, AI can detect and track video sources to ensure proper use and storage, and alert management if assets move outside predefined boundaries. Security camera systems can be active security partners, controlling building access and identifying dangerous situations.

Machine vision and industrial automation provide immediate results in increased productivity, tighter quality control and higher efficiency. A cornerstone of Industry 4.0 technology, machine vision is transforming manufacturing, logistics and operations.

Published by Dec 08, 2022 Source :caemolding

Further reading

You might also be interested in ...

Headline
Knowledge
Do You Know About Selective Laser Sintering 3D Printing?
Selective laser sintering is an additive manufacturing technology that sinters small particles of polymer powder into a 3D three-dimensional structure through high-power laser light; thus, this is also called selective laser sintering 3D printing, or SLS 3D printing.
Headline
Knowledge
Quick Guide About Automated Guided Vehicle (AGV)
During the operation of a factory, the flow of materials determines the production efficiency of the factory. Recently, production lines have gradually added automation equipment, but the supply or handling of materials to and from the production line still relies on manual handling operations. This often results in unsmooth logistics and interrupted production flow. To avoid interruptions in supply, and reduce storage and production space, Automated Guided Vehicle (AGV) technology offers an unmanned management solution.
Headline
Knowledge
Types of Plastic Manufacturing Processes
Plastic products can be seen everywhere in daily life, and different plastic products are made through different processing techniques. Plastics manufacturing is the process of making plastic into semi-products or products with practical value. Plastics manufacturing usually includes primary processing and secondary processing of plastics.
Headline
Knowledge
Do You Know About Semiconductor Supply Chain?
Semiconductor supply chain include all kinds of semiconductor manufacturing and design industries, such as IC manufacturing, IC packaging and testing, IC design, and discrete component manufacturing.
Headline
Knowledge
What Are the Different Types of Electric Linear Actuators?
With the continuous development of the downstream industry of linear actuator and the continuous expansion of linear actuator applications, the global demand for linear actuator has shown a rapid growth. In 2019, the global linear actuator market has exceeded 15 billion yuan.
Headline
Knowledge
What Are the Common Types of Plastic Machinery in the Plastics Industry?
Plastic molding processing technology has been widely used in the production of many high-tech products, such as auto parts, 3C electronic products, connectors, displays, mobile phones, plastic optical lenses, biomedical application products, and general daily necessities, etc. With the trend of diversification of product usage and variability in functional requirements, plastic molding processing technology is booming day by day.
Headline
Knowledge
What Is the Structure of A Milling Machine?
Milling machines provide support to the manufacturing industries. The milling machines can perform almost every milling operation like gear milling, thread milling, angular milling, etc.
Headline
Knowledge
What Is It About Stamping Press Machines?
A stamping press machine is a machine that can process sheet metal into the desired shape. It is commonly used for metal stamping to convert a flat metal sheet into a specific shape. What are the types of punching machines? Let's dig it out!
Headline
Knowledge
What is an Oscilloscope?
An oscilloscope is a diagnostic instrument that graphs electrical signals. Whether it is a simple or complex product, it includes electronic components, and its design, verification, and the debugging process require an oscilloscope to analyze the many electrical signals that make the product wake up.
Headline
Knowledge
What is Heat-assisted Magnetic Technology?
Heat-Assisted Magnetic Recording (HAMR) is a technology that uses laser heat to first heat highly stable media to assist in the magnetic recording of data.
Headline
Knowledge
Key Components of Automotive Semiconductors: ECU, MCU and Sensor
The automotive semiconductor market continues to be optimistic. At present, the main automotive semiconductor chips include microcontrollers (MCU), power management ICs, digital signal controllers (DSP), sensors, power semiconductors, discrete components, micro-electromechanical (MEMS), memory, customized application IC (ASIC), etc. The automotive chip supply chain is complex and long. After the shortage storm in 2021, automakers began to shorten the semiconductor supply chain, hoping to shorten the long chain. Some automakers even have the idea of developing and designing automotive semiconductors by themselves.
Headline
Knowledge
What is Sheet Metal Processing?
"Sheet metal" in sheet metal processing refers to thin metal plates, which can be processed by stretching, stamping, bending, etc., and the thickness is usually less than 6mm. Common materials include iron plates (black steel SPHC, cold-rolled steel SPCC, galvanized steel SECC), hot-dip galvanized steel sheet SGCC), stainless steel (SUS304, SUS316), aluminum (AL5052), copper, etc. Sheet metal processing is different from other processing technologies. It includes many different steps, such as: laser cutting, NCT punching, cutting, folding, welding, riveting, etc. The specific products produced are usually support frames, equipment covers, internal parts and some functional objects, such as electronic control panels, medical equipment covers, airport automatic clearance machine covers or parts, snapshot cabinets, food processing equipment covers and parts.
Agree