What is Motion Control?
Knowledge

What is Motion Control?

Motion control (MC) is a branch of automation. It uses some equipment commonly known as servo mechanisms such as hydraulic pumps, linear actuators, or motors to control the position or speed of the machine.
Published: Mar 24, 2021
What is Motion Control?

The application of motion control in the field of robots and CNC machine tools is more complicated than the application in special machines because the latter has a simpler motion form and is usually called general motion control (GMC). Motion control is widely used in packaging, printing, textile, and assembly industries.

Motion controller looks at motion control, the difference between motor control and motion control.

In the field of industrial control and automation, what exactly does motion control mean?

In summary, motion control is mainly divided into two directions, one is a motion control, which is usually used in the mechanical field; the other is process control, which is usually used in the chemical industry. And motion control refers to a kind of servo system that originated in the early days, based on the control of the motor, to realize the control of the change of the angular displacement, torque, speed, and other physical quantities of the object.

The difference between motor control and motion control:

In the above definition, motor control is mentioned, but motor control and motion control are different. From the point of concern, motor control (herein referred to as a servo motor) is mainly concerned with controlling one or more of the torque, speed, and position of a single motor to a given value. The focus of motion control is to coordinate multiple motors to complete the specified motion (composite trajectory, composite speed), and focus more on trajectory planning, speed planning, and kinematics conversion; for example, CNC machine tools need to coordinate XYZ axis motors to complete interpolation action.

Motor control is often used as a link of the motion control system (usually a current loop, working in torque mode), and it focuses more on the control of the motor. It generally includes three control loops: position control, speed control, and torque control. Generally, there is no plan. (Some drives have simple position and speed planning capabilities); motion control is often for products, including mechanical, software, electrical, and other modules, such as robots, drones, motion platforms, etc., which are for mechanical motion the position and speed of the components are controlled and managed in real-time so that they can be controlled following the expected motion trajectory and prescribed motion parameters.

Part of motor control and motion control overlap: the position loop/speed loop/torque loop can be implemented in the drive of the motor or the motion controller, so the two are easy to confuse.

The basic structure of the motion control system

The basic structure of a motion control system includes a motion controller: used to generate track points (desired output) and close the position feedback loop. Many controllers can also close a speed loop internally.

Motion controllers are mainly divided into three categories, namely PC-Based, dedicated controllers, and PLC. Among them, PC-Based motion controllers are widely used in electronics, EMS, and other industries; the representative industries of dedicated controllers are wind power, photovoltaics, robots, molding machinery, etc.; PLC is favored in rubber, automotive, metal metallurgy, and other industries.

Drive or amplifier: used to convert the control signal from the motion controller into a higher power current or voltage signal. The more advanced intelligent drive can close the position loop and speed loop by itself to obtain more precise control.

Actuators: such as hydraulic pumps, cylinders, linear actuators, or motors to output motion. Feedback sensor: such as photoelectric encoder, resolver, or Hall effect device, etc., used to feedback the position of the actuator to the position controller to realize the closure of the position control loop.
Numerous mechanical components are used to convert the motion form of the actuator into the desired motion form, including gearboxes, shafts, ball screws, toothed belts, couplings, and linear and rotary bearings.

Look at motion control from a motion controller

The emergence of motion control has promoted electromechanical control solutions. For example, in the past, both cams and gears needed to be realized by mechanical structures. Now they can be realized by electronic cams and electronic gears, which eliminates the return, friction, and wear of the mechanical realization process.

Mature and stable motion control products not only need to provide path planning, forward-looking control, motion coordination, interpolation, kinematics forward and inverse solutions, and drive motor command output, but also need to have engineering configuration software, syntax interpreter, and simple PLC Function, PID control algorithm realization, HMI interactive interface, fault diagnosis interface, advanced motion controller can also realize safety control and so on.

The development trend of motion control technology and market

According to the market research report released by Markets and Markets, the global motion control market (including spare parts: AC motors, motors, motion controllers, AC drives, electronic drives; applications: packaging, material processing, metal processing, conversion, positioning) is expected to be Reached 22.84 billion U.S. dollars, growing at a compound annual growth rate of 5.5% between 2016 and 2022.

As far as motion controllers are concerned, with the expansion of industry applications, China's motion control market has gradually matured. Good development has been achieved in most downstream machinery industries such as machine tools, engraving machines, semiconductors, industrial robots, EMS, and material handling. Especially in industries such as lithium batteries, industrial robots, semiconductors, and EMS, European, American, and Japanese motion control manufacturers have outstanding performance and have strong comprehensive competitive advantages.

Since the goal of motion control is to complete the production line process to manufacture products, the motion control process in the middle is not the most important, but how to meet the requirements correctly and in real-time is the most important function; plus, various products now The requirements for precision are getting higher and higher, and the requirements for the manufacturing process are getting more and more stringent. Motion control emphasizes real-time and precision. To achieve optimization, various related technologies must be integrated. Such integration is regarded as the most difficult control technology.

Dedicated controllers will remain the main type of motion controller in the industrial robot industry for a while. The PC-Based motion control market in the semiconductor industry is developing steadily, with a growth rate of about 17%. The increasing demand for machine vision functions in the logistics industry has led to a gradual increase in the proportion of PC-Based. The traditional printing machinery is still dominated by PLC motion controllers. The application of PC-Based motion controllers has just started. It is used more in emerging digital printing machinery and will grow slightly in the future. According to expert analysis and prediction, the market demand for motion controllers will become larger and larger in the next few years, which will be one of the foundations of future industrial development.

Published: Mar 24, 2021 Source :kknews

  • Manufacturing Industry
  • Motion Control
  • Motor Control
  • Automation Industry
  • Smart Industry

Further reading

You might also be interested in ...

Headline
Knowledge
What Is the Cryogenic Treatment Process?
Low-temperature treatment is a sub-zero process, which is carried out immediately after quenching and is carried out by continuous tempering. The ultra-cold treatment has a significant improvement in the wear strength of the workpiece and has a breakthrough benefit for the stability of the mold size.
Headline
Knowledge
What Is the Electroplating Process of Plastic ABS?
In recent years, plastic electroplating has been widely used in decorative electroplating of plastic parts. ABS plastic is the most widely used kind of plastic electroplating.
Headline
Knowledge
What Is the Basics and Advantage of Between Liquid and Powder Coating?
Metal fabricators looking to take on finishing should know about two of the most common finishing alternatives—liquid and powder coating—and the requirements involved for a company hoping to apply one or both.
Headline
Knowledge
Check The Important Objectives of Tool Designing In The Manufacturing Process
The discipline of tooling design is fundamental to manufacturing. The cost of manufacturing and of the end product depends heavily upon tool design.
Headline
Knowledge
What Is Precision Stamping Technology?
Metal stamping refers to the use of the power of punching machinery and the use of molds as metal plate forming tools to produce punching separation or plastic deformation effects to achieve the production technology of parts in terms of size, shape, and performance requirements.
Headline
Knowledge
Looking Forward to the Global Laser Industry Trend
In response to the development of international industry demand, the laser industry and technology have begun to develop towards 5G semiconductors and smart vehicle process requirements. Taiwan’s laser industry has developed for many years and has a solid foundation, but to continue to keep up with the international pace, the need for independent laser technology step up.
Headline
Knowledge
Which Plastic Machinery Does the Plastics Industry Cover?
Plastic molding processing technology has been widely used in the production of many high-tech products, such as auto parts, 3C electronic products, connectors, displays, mobile phones, plastic optical lenses, biomedical application products, and general daily necessities, etc. With the trend of diversification of product usage and variability in functional requirements, plastic molding processing technology is booming day by day.
Headline
Knowledge
What Are the Structural Characteristics of Horizontal Lathes?
The advantage of the gearbox is that it can accurately control the speed of the main shaft without excessively high main shaft speed, belt friction consumption, and slippage. Because the main shaft is placed horizontally, it is also called a horizontal lathe.
Headline
Knowledge
Machine Tool Knowledge - Boring (manufacturing): Machine Type, Machine Definition, and Tunnel Boring Machine
In machining, boring is the process of enlarging a hole that has already been drilled by means of a single-point cutting tool, such as in boring a gun barrel or an engine cylinder.
Headline
Knowledge
Flatness Inspection Method of Worktable
The machine tool industry is regarded as an indicator of the country’s degree of industrialization. In recent years, the aerospace and automotive industry demands and today, as the machining accuracy requirements are increasing day by day, mechanical geometric accuracy is still the most important key.
Headline
Knowledge
Milling Machine – What Is Milling Machine And Parts of Milling Machine
Milling machines provide support to the manufacturing industries. The milling machines can perform almost every milling operation like gear milling, thread milling, angular milling, etc.
Headline
Knowledge
What Is The Parts of The Lathe? The Concept of Lathe
A lathe is a machine tool used principally for shaping articles of metal (and sometimes wood or other materials) by causing the workpiece to be held and rotated by the lathe while a tool bit is advanced into the work causing the cutting action.
Agree