What is Motion Control?
Knowledge

What is Motion Control?

Motion control (MC) is a branch of automation. It uses some equipment commonly known as servo mechanisms such as hydraulic pumps, linear actuators, or motors to control the position or speed of the machine.
Published: Mar 24, 2021
What is Motion Control?

What is Motion Control?

The application of motion control in the field of robots and CNC machine tools is more complicated than the application in special machines because the latter has a simpler motion form and is usually called general motion control (GMC). Motion control is widely used in packaging, printing, textile, and assembly industries.

Motion controller looks at motion control, the difference between motor control and motion control.

In the field of industrial control and automation, what exactly does motion control mean?

In summary, motion control is mainly divided into two directions, one is a motion control, which is usually used in the mechanical field; the other is process control, which is usually used in the chemical industry. And motion control refers to a kind of servo system that originated in the early days, based on the control of the motor, to realize the control of the change of the angular displacement, torque, speed, and other physical quantities of the object.

The difference between motor control and motion control:

In the above definition, motor control is mentioned, but motor control and motion control are different. From the point of concern, motor control (herein referred to as a servo motor) is mainly concerned with controlling one or more of the torque, speed, and position of a single motor to a given value. The focus of motion control is to coordinate multiple motors to complete the specified motion (composite trajectory, composite speed), and focus more on trajectory planning, speed planning, and kinematics conversion; for example, CNC machine tools need to coordinate XYZ axis motors to complete interpolation action.

Motor control is often used as a link of the motion control system (usually a current loop, working in torque mode), and it focuses more on the control of the motor. It generally includes three control loops: position control, speed control, and torque control. Generally, there is no plan. (Some drives have simple position and speed planning capabilities); motion control is often for products, including mechanical, software, electrical, and other modules, such as robots, drones, motion platforms, etc., which are for mechanical motion the position and speed of the components are controlled and managed in real-time so that they can be controlled following the expected motion trajectory and prescribed motion parameters.

Part of motor control and motion control overlap: the position loop/speed loop/torque loop can be implemented in the drive of the motor or the motion controller, so the two are easy to confuse.

The basic structure of the motion control system

The basic structure of a motion control system includes a motion controller: used to generate track points (desired output) and close the position feedback loop. Many controllers can also close a speed loop internally.

Motion controllers are mainly divided into three categories, namely PC-Based, dedicated controllers, and PLC. Among them, PC-Based motion controllers are widely used in electronics, EMS, and other industries; the representative industries of dedicated controllers are wind power, photovoltaics, robots, molding machinery, etc.; PLC is favored in rubber, automotive, metal metallurgy, and other industries.

Drive or amplifier: used to convert the control signal from the motion controller into a higher power current or voltage signal. The more advanced intelligent drive can close the position loop and speed loop by itself to obtain more precise control.

Actuators: such as hydraulic pumps, cylinders, linear actuators, or motors to output motion. Feedback sensor: such as photoelectric encoder, resolver, or Hall effect device, etc., used to feedback the position of the actuator to the position controller to realize the closure of the position control loop.
Numerous mechanical components are used to convert the motion form of the actuator into the desired motion form, including gearboxes, shafts, ball screws, toothed belts, couplings, and linear and rotary bearings.

Look at motion control from a motion controller

The emergence of motion control has promoted electromechanical control solutions. For example, in the past, both cams and gears needed to be realized by mechanical structures. Now they can be realized by electronic cams and electronic gears, which eliminates the return, friction, and wear of the mechanical realization process.

Mature and stable motion control products not only need to provide path planning, forward-looking control, motion coordination, interpolation, kinematics forward and inverse solutions, and drive motor command output, but also need to have engineering configuration software, syntax interpreter, and simple PLC Function, PID control algorithm realization, HMI interactive interface, fault diagnosis interface, advanced motion controller can also realize safety control and so on.

The development trend of motion control technology and market

According to the market research report released by Markets and Markets, the global motion control market (including spare parts: AC motors, motors, motion controllers, AC drives, electronic drives; applications: packaging, material processing, metal processing, conversion, positioning) is expected to be Reached 22.84 billion U.S. dollars, growing at a compound annual growth rate of 5.5% between 2016 and 2022.

As far as motion controllers are concerned, with the expansion of industry applications, China's motion control market has gradually matured. Good development has been achieved in most downstream machinery industries such as machine tools, engraving machines, semiconductors, industrial robots, EMS, and material handling. Especially in industries such as lithium batteries, industrial robots, semiconductors, and EMS, European, American, and Japanese motion control manufacturers have outstanding performance and have strong comprehensive competitive advantages.

Since the goal of motion control is to complete the production line process to manufacture products, the motion control process in the middle is not the most important, but how to meet the requirements correctly and in real-time is the most important function; plus, various products now The requirements for precision are getting higher and higher, and the requirements for the manufacturing process are getting more and more stringent. Motion control emphasizes real-time and precision. To achieve optimization, various related technologies must be integrated. Such integration is regarded as the most difficult control technology.

Dedicated controllers will remain the main type of motion controller in the industrial robot industry for a while. The PC-Based motion control market in the semiconductor industry is developing steadily, with a growth rate of about 17%. The increasing demand for machine vision functions in the logistics industry has led to a gradual increase in the proportion of PC-Based. The traditional printing machinery is still dominated by PLC motion controllers. The application of PC-Based motion controllers has just started. It is used more in emerging digital printing machinery and will grow slightly in the future. According to expert analysis and prediction, the market demand for motion controllers will become larger and larger in the next few years, which will be one of the foundations of future industrial development.

Published by Mar 24, 2021 Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
A Complete Guide to Selecting the Ideal Paper Cups for Hot Beverages
This guide provides a detailed overview of how to choose the best paper cups for hot beverages. It explores the different types of cups—single-wall, double-wall, insulated, and eco-friendly—and explains their unique features and ideal use cases. Key factors to consider include beverage temperature, insulation needs, cup size and lid compatibility, environmental impact, and safety standards. The article also outlines best practices for both consumers and businesses to ensure safe use and responsible disposal. Ultimately, selecting the right paper cup depends on balancing functionality, comfort, sustainability, and cost.
Headline
Knowledge
Understanding the Difference Between Reverse Osmosis and Traditional Water Filters
An in-depth comparison between reverse osmosis (RO) and traditional water filters, two widely used methods for purifying drinking water. It outlines how RO uses a semi-permeable membrane to remove dissolved salts, heavy metals, and microorganisms, making it ideal for areas with highly contaminated water. In contrast, traditional filters rely on physical and chemical filtration - often using activated carbon - to improve taste and remove larger particles. While RO systems offer superior contaminant removal, they come with higher costs and water usage. Traditional filters are more affordable and environmentally friendly but less effective against microscopic impurities. The article concludes that the best choice depends on specific water quality needs, and in some cases, combining both systems can offer the most comprehensive solution.
Headline
Knowledge
A Comprehensive Guide to Selecting Cutting Techniques in Plastic Bag Production
This article provides a detailed comparison of hot and cold cutting methods used in plastic bag manufacturing, emphasizing how the choice impacts production efficiency, edge sealing, and material compatibility. Hot cutting uses heated blades to cut and seal simultaneously, making it ideal for leak-proof and high-speed production, while cold cutting offers precise, sharp cuts without heat damage, suitable for a variety of bag types. The selection depends on factors such as material type, production requirements, and environmental considerations. Understanding the strengths and limitations of each method helps manufacturers optimize their processes and meet evolving industry demands.
Headline
Knowledge
Exploring Ventilator-Associated Pneumonia (VAP) and Its Effects on ICU Patients
Ventilator-associated pneumonia (VAP) is a significant healthcare challenge in intensive care units, typically occurring in patients who have undergone mechanical ventilation for at least 48 hours. It is associated with high morbidity, mortality, and healthcare costs. VAP develops due to respiratory tract colonization by pathogens, facilitated by invasive devices like endotracheal tubes. Common bacteria include Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Risk factors range from prolonged ventilation to prior antibiotic use and underlying health issues. Diagnosing VAP is difficult due to overlapping symptoms with other lung conditions and the absence of standardized criteria, often leading to antibiotic overuse. Preventive strategies—such as ventilator care bundles, elevating the head of the bed, maintaining oral hygiene, and staff training—are critical to reducing its incidence. While progress has been made, ongoing research and consistent application of evidence-based practices are essential to improve outcomes and lower the burden of VAP in ICU settings.
Headline
Knowledge
Popping Boba: A Comprehensive Exploration
Popping boba, also known as bursting boba or popping pearls, is a fascinating and popular addition to the world of beverages and desserts. These small, colorful spheres are known for their unique texture and the burst of flavor they provide when consumed. This article delves into the intricacies of popping boba, exploring its composition, production process, popularity, and culinary applications. By examining various sources, this report aims to provide a comprehensive understanding of popping boba, highlighting its significance in contemporary food culture.
Headline
Knowledge
Nylon and Sustainability: Exploring Greener Alternatives for the Future
Nylon has been a widely used synthetic material since the early 1900s, valued for its strength, flexibility, and resilience. From fashion to industrial use, it’s found in countless products. But as sustainability becomes a global priority, nylon’s environmental impact has come under greater scrutiny. This article takes a closer look at how nylon is made, its environmental challenges, and the more sustainable options now available.
Headline
Knowledge
EPE Pearl Cotton Recycling Solution: A Comprehensive Overview
This article examines the recycling of Expanded Polyethylene (EPE) Pearl Cotton—a lightweight, shock-absorbing, and moisture-resistant packaging material. While EPE offers many benefits, its bulky form and high transportation costs make recycling difficult. However, advancements in recycling technologies and increasing environmental awareness are driving the development of more effective solutions. The report explores current challenges, emerging recycling methods, and the future potential of EPE recycling.
Headline
Knowledge
Are Compatible Toner Cartridges a Smart Choice? A Comprehensive Analysis
Toner cartridges play a crucial role in both the performance and cost-effectiveness of printing. Among the available options, compatible toner cartridges—third-party products made to function with branded printers—have become a widely used alternative to Original Equipment Manufacturer (OEM) cartridges. This report examines the advantages and disadvantages of compatible cartridges, considering factors such as cost, environmental impact, print quality, and potential risks. By drawing on diverse sources, it provides a balanced evaluation of their suitability for personal and business use.
Headline
Knowledge
Pneumatic Power Tools: Reliable, High-Performance Solutions for Industrial Applications
Pneumatic power tools, commonly known as air tools, are widely used in industrial, automotive, and construction settings due to their efficiency, durability, and power. These tools operate using compressed air, making them a lightweight and high-powered alternative to electric or battery-operated tools. Pneumatic power tools consistently perform well, even under the most demanding conditions. They come in various forms, including impact wrenches, pneumatic drills, sanders, grinders, ratchets, air hammers, chisels, paint sprayers, nail guns, and staplers.
Headline
Knowledge
Introducing the Vise Grip: A Tool of Precision and Power
In 1921, in the quiet workshop of a small-town Nebraska blacksmith, William S. Petersen, a Danish immigrant, invented an ingenious tool that forever changed the landscape of hand tools. He created a new type of pliers with a vise-like grip that could lock onto his work. The Vise-Grip's unique ability to securely latch onto any object with unparalleled precision and strength not only made it a tool but a true extension of the craftsman's hand. This provided an adjustable, locking grip for a wide range of applications.
Headline
Knowledge
Adjustable Wrenches and Pipe Wrenches: Essential Tools for Plumbing and Maintenance
Adjustable wrenches and pipe wrenches have long been recognized as effective solutions for mechanical repairs, plumbing, and construction. Due to their ability to adjust jaw width, they are extremely versatile, allowing a single wrench to fit various sizes of nuts, bolts, and pipes. Their practicality and durability have made them indispensable tools for both professionals and DIY enthusiasts. Each type of wrench serves a unique function and offers distinct benefits.
Headline
Knowledge
RO Filter System Quick Fit Connectors: A Reliable and Efficient Solution
Quick fit connectors have become a preferred solution for connecting tubing in reverse osmosis (RO) filter systems due to their ease of use, reliability, and efficiency. Traditional threaded and compression fittings often require tools and careful handling to ensure a secure and leak-free connection. Quick fit connectors, however, offer a tool-free, push-to-connect mechanism that ensures a tight seal in seconds. Their widespread adoption in RO filtration and other water treatment applications highlights their effectiveness in enhancing system performance and installation convenience.
Agree