What is Roughing?
Knowledge

What is Roughing?

Refers to products made by simple processing or the primary processing of raw materials. In machinery, rough-processed products generally refer to products that efficiently remove most of the remaining amount and make the benchmark for subsequent processing.
Published: Jul 07, 2020
What is Roughing?

The CNC process can be simply divided into roughing and finishing, and CNC roughing is to make the material into a rough shape, and finishing is to cut the material into fine shape. Rough machining first removes excess parts, followed by precision machining in the second step of finishing.

Understand what is roughing?

Rough-processed products refer to products made by simple processing or the primary processing of raw materials. They are generally prepared for semi-finishing and finishing, which is convenient for the subsequent processing process to be faster and more convenient. Rough-processed products have low processing accuracy and surface Poor quality and other characteristics.

Rough machining does not have high requirements on the surface quality after machining. Generally, it is to prepare for semi-finishing and finishing. Because the rough machining allowance is large, the processing speed is high, and the heat generated by the machining is also large, so the processing Tool requirements are relatively high. Generally, alloy materials with high hardness are used as tool materials. At the same time, heat treatment measures must be taken during roughing, and if necessary, manual cooling of the tool, such as oil bath cooling and air cooling to extend the tool life.

Rough machining mainly has the following functions:
  1. After the workpiece processing is divided into stages, rough machining can eat knife and feed. The processing error caused by factors such as large machining allowance and large cutting force can be gradually corrected by semi-finishing and mechanical finishing to ensure the processing quality.
  2. Reasonable use of processing equipment, rough processing, and finishing have different requirements for processing equipment. After the processing stages are divided, the characteristics of rough processing equipment will be fully utilized. Reasonable use of equipment to provide production efficiency. The roughing equipment has high power, high efficiency, and strong rigidity. The precision of finishing equipment is high. The error is small, which meets the requirements of the drawings.
  3. Rough machining is first, and the defects of the workpiece blank can be found in time. The various defects of the blank, such as sand holes, pores, and insufficient processing allowance, can be found after rough machining, which is convenient for timely repair or decision to scrap, so as not to waste the working hours and costs after continued processing.
  4. Reasonably arrange the cold heat-treatment process. After hot working, the residual stress of the workpiece is relatively large, and the rough and finish machining are separated, and the aging can be arranged to eliminate the residual stress, and the finishing after cooling can be arranged to eliminate its deformation.
  5. Rough machining is arranged in the front, and mechanical finishing and finishing are arranged in the back, which can protect the surface of the finishing and finishing from less abrasion.
Cutting fluid selection under rough cutting conditions
  1. When the CNC machine tool needs to be separated from rough and finish machining or the workpiece is not completed on one machine tool, the cutting fluid can be selected according to the characteristics of rough and finish machining. During roughing, the amount of back-feeding and the amount of feed are large, resulting in large cutting resistance, which generates a large amount of cutting heat, and the heat transferred to the workpiece and the tool also increases accordingly, making the thermal deformation of the workpiece and the wear of the tool intensified, Water-based cutting fluids with cooling as the main factor and certain lubricating, cleaning and anti-rust effects should be selected, and continuous pouring with the large flow is required. When turning or other continuous machining or rough machining allowances are uniforms, the cutting heat is an important consideration, and the cooling effect of the cutting fluid is the first indicator to be measured.
  2. When milling or machining irregular shapes, uneven margins, and intermittent machining, the cutting speed is lower than that of continuous uniform machining, the impact of cutting heat is less than the impact of impact and vibration on the tool and the workpiece, and the lubrication of the cutting fluid And cooling must be balanced. When the machine tool conditions permit, you can use the inner hole car with internal liquid supply hole, boring cutter, and grooving cutter during hole processing and cutting, or use pressure supply liquid, and use the spray liquid supply when roughing difficult materials. All can play a better effect.
  3. Roughly processed workpieces generally have a machining allowance. At the same time, when processing difficult materials and non-ferrous metal materials, the surface roughness accuracy index is not high. Therefore, when machining difficult materials and non-ferrous metal materials, rough machining the chemical composition in the liquid is not high, and water-based extreme pressure emulsion can be used.
  4. When roughing cast iron and brittle nonferrous metals, the common feature of these materials during cutting is that the chips are crumbling, and the fine chips are flowing under the impact of the cutting fluid, and flow through the cutting fluid tank as the cutting fluid circulates Most will deposit, some will flow with the cutting fluid, and the small parts of the cutting fluid delivery tube will block the cooling nozzle and make the chips stick to the moving parts of the machine tool (such as the guide rail motion pair). At the same time, the chemical reaction between the cutting fluid and certain components in the cast iron causes the cutting fluid to deteriorate, causing the performance of the cutting fluid to deteriorate. Because the use of cutting fluid will bring these problems. Generally, do not use cutting fluid. To reduce the impact of dust and cutting heat, when conditions are available, you can consider using a dust extraction device to absorb dust, fine chips, and a part of heat. If cutting fluid is used, it is easy to use water-based cutting fluid, and the cutting fluid must be filtered and purified to prevent the deterioration of the cutting fluid and the prevention of concentration decline. When roughing, the concentration of cutting fluid is lower compared to finishing.

Six common ways to optimize roughing errors

Optimizing rough machining is three to four times faster than traditional machining methods, and makes the service life of cutting milling cutters in titanium alloy longer. The design of parts with straight prismatic walls requires a longer axial cutting depth and can engage all grooves on the milling cutter, which is ideal for optimizing roughing. In these cases, this strategy optimizes the often-challenging corner features and achieves high metal removal rates in superalloys and various stainless steels.

However, to avoid errors and imperfect results, for applications that are not in the optimal parameter range, the workshop should skip optimizing roughing. For example, in a complex three-dimensional mold cavity, optimized roughing may produce a stepped surface, requiring a lot of semi-finishing. In this case, high-feed roughing will produce better results.

  1. Excessively large span
    As the number of grooves increases, the span size must be reduced to maintain proper chip formation and surface finish at higher feed speeds. If the span is too large and the amount of metal removed is large, milling will generate more heat, forcing the feed rate to decrease. Reducing the span size can increase the cutting speed. When removing the same amount of material, more processes are required, but due to the increase in feed rate, the metal removal rate will be higher.
  2. Inferior arbor
    Optimized roughing requires a high-precision tool holder. Its specifications are similar to those of a hard-milling machine, including milling cutter runout less than 0.0004". If there is no precision fixture, milling will occur at a high feed rate optimized for roughing unsatisfactory vibration. Most shrink chucks, milling chucks, high-precision chucks, and selected end mill holders meet the accuracy standards for optimizing roughing. Milling cutters, chucks, and environmental maintenance are all critically important role, because dirty chuckholes, ambient temperature changes or unstable machine tool foundations will shorten the cutter life.
  3. Outdated milling machine
    The fast spindle and machine tool rigidity help provide better optimized roughing performance. The spindle must produce sufficient speed to support high feed rates, and the machine tool rigidity from the spindle bearing to the ball screw must minimize vibration to achieve smooth cutting, stable milling cutter life, and excellent part quality.
  4. Poor programming
    Manual programming and software designed for high-speed side milling cannot handle demanding machine tool movements that optimize roughing. Similarly, software designed for complex three-dimensional high-speed milling may not be able to maintain continuous engagement at narrow corners. To be successful, the process needs software that truly adapts to the process, not compromises.
  5. Improper milling depth
    The depth of cut plays a vital role in optimizing roughing. In 2xD and the entire edge length of the milling cutter, the effect of one pass is the best. A shallower radial span makes the cutting depth deeper, while a larger span value generates more heat, and requires a shallower cutting depth to achieve the same metal removal rate. Cutting depths better than 3xD will generate cutting pressure that exceeds the milling cutter's ability and causes offset. Chip breakers can minimize radial cutting pressure to reduce the possibility of deflection and assist in chip control.
  6. Unsuitable processing parameters
    The machine tool software contains default values for speed and feed, but these general parameters cannot predict the correct parameters for any particular cutting mill. Instead, the factory should ask their milling cutter supplier for recommended parameters derived from meticulous research and years of first-hand experience. Optimize cutting data for different milling cutter designs and their specific material groups. According to the different milling cutters selected according to the processing needs, the adjustment of the appropriate processing parameters can achieve the improvement of the processing efficiency.
Optimizing roughing: strategies to increase milling cutter life and workpiece quality.

Optimized roughing provides efficient results on applicable parts and features, including grooves with longer axial cutting depths, challenging corners and straight walls. This strategy can significantly improve part cycle time, surface finish, milling cutter life, and machine tool utilization. Taking the time to understand the workshop that optimizes rough machining can increase productivity, efficiency, and profitability, and these parts are the best choice for this strategy. To achieve the best results, the workshop should use the expertise of milling cutter suppliers to adjust their methods for individual work.

Published by Jul 07, 2020 Source :kknews, Source :baike.baidu, Source :endmills

Further reading

You might also be interested in ...

Headline
Knowledge
Redefining Makeup Removal: Evolving from Traditional Nonwovens to Medical-Grade Standards
As skincare routines become increasingly refined, makeup removal products are no longer secondary tools used solely for eliminating cosmetics. Instead, they have become the first line of defense for skin health, anti-irritation performance, and the sensory experience of daily rituals. The material composition and structural engineering of removal substrates—such as cotton pads, cleansing cloths, and wipes—are undergoing continuous optimization. The industry is shifting from simple absorbent functions toward advanced development that combines low friction, minimal residue, enhanced skin compatibility, and environmental sustainability.
Headline
Knowledge
The Superpower of PCBs: Unveiling the Magic of Heat Dissipation
Every PCB is like a bustling miniature city: the electric current flows like nonstop traffic, and the electronic components are the lively citizens. When “traffic jams” occur, heat builds up quickly. Without proper thermal design, LEDs, CPUs, and power transistors can “overheat” and fail. A PCB isn’t just a circuit-connecting board—it also acts as the city’s “air-conditioning engineer.” Copper traces serve as high-speed distribution lanes, thermal vias function like air ducts, and the board material and metal backing work as invisible heat-dispelling magic. Combined with airflow management inside the enclosure, the PCB efficiently channels heat away, ensuring components perform reliably and quietly safeguarding the entire electronic system.
Headline
Knowledge
From Marine Polysaccharides to Pet Wellness: A New Milestone in Fucoidan Applications
In recent years, companion animals have come to occupy an increasingly significant role in human life—not merely as pets, but as integral members of the family. As pet owners place growing emphasis on animal health and longevity, the demand for functional health ingredients has surged. Among these, fucoidan, a marine-derived polysaccharide extracted from brown seaweed, has emerged as a key player in the field of pet nutritional science. Recognized for its immunomodulatory, antioxidant, and cellular repair properties, fucoidan is redefining the standards for preventive care and holistic wellness in companion animals.
Headline
Knowledge
Eco-Friendly Tableware and Food Safety: A Choice for Both the Environment and Health
With a global increase in plastic reduction and environmental awareness, a growing number of businesses and consumers are opting for eco-friendly tableware made from natural or biodegradable materials to replace traditional plastic items. Eco-friendly tableware—such as that made from bamboo fiber, sugarcane bagasse, leaf fiber, or PLA—typically does not contain harmful substances like plasticizers or BPA, thus reducing potential health risks. According to the European Union's Food Contact Materials Regulation (EC No. 1935/2004), "food contact articles shall not transfer their constituents to food in quantities that could endanger human health." However, when production processes or manufacturing technologies are inadequate, eco-friendly tableware can still pose food safety risks.
Headline
Knowledge
Food Cleanliness and Its Impact on the Human Body: A Farm-to-Table Guarantee
The cleanliness of food, defined as the hygienic state of food surfaces and production environments, is crucial for consumer health. The World Health Organization (WHO) reports that globally, approximately 600 million people fall ill each year from consuming contaminated food, leading to about 420,000 deaths.
Headline
Knowledge
Green Printing Transformation Becomes the Core Competitiveness of a Sunset Industry
As global concerns over climate change, plastic pollution, and carbon emissions intensify, the printing industry is undergoing a profound green transformation. From packaging and commercial publishing to labels and promotional materials, green printing is no longer just an added value—it's becoming a fundamental requirement for brand compliance and supply chain standards.
Headline
Knowledge
From Equipment to System: Building a Highly Consistent and Maintainable Smart Coffee Platform
In today’s retail and service environments, smart coffee solutions that offer high consistency, scalability, and ease of maintenance have become key criteria for commercial adoption. Based on advanced automation control technologies and incorporating Specialty Coffee Association (SCA) brewing standards, this platform integrates modular hardware architecture, data-driven algorithms, and cloud-based remote management. It enables comprehensive deployment—from standalone machines to full-site integration. This system-oriented design not only enhances product stability and flavor reproducibility, but also significantly reduces maintenance costs, making it an ideal solution for chain retailers, branded venues, and smart vending scenarios.
Headline
Knowledge
Development Trends of Intelligent Industrial Lifting Equipment
As global manufacturing accelerates its transition toward smart transformation, the demand for industrial lifting equipment and lubrication systems continues to rise. The Taiwan and Asia-Pacific markets are steadily expanding, with increasing demand for high-safety and precision-controlled lifting and lubrication equipment in the automotive repair and industrial manufacturing sectors. The advancement of smart manufacturing has promoted the integration of intelligent sensing and remote monitoring technologies, making these devices the core driving force of smart factories, fueling rapid market growth and serving as a key driver for Fugimaku’s continuous innovation and development.
Headline
Knowledge
The Tough Hero of the Tool World: The Secrets of Tungsten Carbide
In the world of industrial cutting tools, tungsten carbide is like a superhero: extremely hard, wear-resistant, heat-tolerant, and remarkably tough, able to stay sharp without chipping during high-speed cutting and prolonged machining. From rough milling to precision engraving, its variety of tool shapes and coating technologies allow it to tackle diverse challenges. Its applications even extend beyond cutting tools to wear-resistant parts, mining bits, and even fashion accessories. Whether in automotive components, aerospace molds, or everyday aesthetics, tungsten carbide stands as a reliable powerhouse in modern manufacturing. This article will take you deep into the material’s properties, machining principles, and real-world applications.
Headline
Knowledge
Professional Analysis and Application Value of Pneumatic Tools
Pneumatic tools are a category of industrial equipment powered by compressed air, widely used across manufacturing, assembly, maintenance, and construction sectors. Compared with electric tools, pneumatic tools are lighter in weight, deliver consistent output, offer high durability, and provide superior safety. These advantages make them the preferred choice for professionals in scenarios that require prolonged, high-frequency, and high-precision operations.
Headline
Knowledge
Common Chronic Diseases and Their Characteristics: A Personalized Health Management Guide
In pursuit of a fast-paced life, we often overlook our body's warning signs. According to the Health Promotion Administration, Ministry of Health and Welfare, chronic diseases like hypertension and diabetes have become a hidden threat to public health. Though these conditions progress slowly, long-term neglect can lead to serious consequences such as heart disease or stroke. This article will help you understand their causes and provide a simple “self-health management process” to proactively take control of your health.
Headline
Knowledge
Professional Analysis of Freight Logistics: From Transportation Management to Smart Supply Chains
Freight logistics is a critical component of modern supply chains. It encompasses not only the transportation of goods from origin to destination but also transportation planning, risk management, warehousing, and the integration of information technology. Professional freight operations can significantly enhance transportation efficiency, reduce costs, and ensure the safety of goods.
Agree