What is Roughing?
Knowledge

What is Roughing?

Refers to products made by simple processing or the primary processing of raw materials. In machinery, rough-processed products generally refer to products that efficiently remove most of the remaining amount and make the benchmark for subsequent processing.
Published: Jul 07, 2020
What is Roughing?

The CNC process can be simply divided into roughing and finishing, and CNC roughing is to make the material into a rough shape, and finishing is to cut the material into fine shape. Rough machining first removes excess parts, followed by precision machining in the second step of finishing.

Understand what is roughing?

Rough-processed products refer to products made by simple processing or the primary processing of raw materials. They are generally prepared for semi-finishing and finishing, which is convenient for the subsequent processing process to be faster and more convenient. Rough-processed products have low processing accuracy and surface Poor quality and other characteristics.

Rough machining does not have high requirements on the surface quality after machining. Generally, it is to prepare for semi-finishing and finishing. Because the rough machining allowance is large, the processing speed is high, and the heat generated by the machining is also large, so the processing Tool requirements are relatively high. Generally, alloy materials with high hardness are used as tool materials. At the same time, heat treatment measures must be taken during roughing, and if necessary, manual cooling of the tool, such as oil bath cooling and air cooling to extend the tool life.

Rough machining mainly has the following functions:
  1. After the workpiece processing is divided into stages, rough machining can eat knife and feed. The processing error caused by factors such as large machining allowance and large cutting force can be gradually corrected by semi-finishing and mechanical finishing to ensure the processing quality.
  2. Reasonable use of processing equipment, rough processing, and finishing have different requirements for processing equipment. After the processing stages are divided, the characteristics of rough processing equipment will be fully utilized. Reasonable use of equipment to provide production efficiency. The roughing equipment has high power, high efficiency, and strong rigidity. The precision of finishing equipment is high. The error is small, which meets the requirements of the drawings.
  3. Rough machining is first, and the defects of the workpiece blank can be found in time. The various defects of the blank, such as sand holes, pores, and insufficient processing allowance, can be found after rough machining, which is convenient for timely repair or decision to scrap, so as not to waste the working hours and costs after continued processing.
  4. Reasonably arrange the cold heat-treatment process. After hot working, the residual stress of the workpiece is relatively large, and the rough and finish machining are separated, and the aging can be arranged to eliminate the residual stress, and the finishing after cooling can be arranged to eliminate its deformation.
  5. Rough machining is arranged in the front, and mechanical finishing and finishing are arranged in the back, which can protect the surface of the finishing and finishing from less abrasion.
Cutting fluid selection under rough cutting conditions
  1. When the CNC machine tool needs to be separated from rough and finish machining or the workpiece is not completed on one machine tool, the cutting fluid can be selected according to the characteristics of rough and finish machining. During roughing, the amount of back-feeding and the amount of feed are large, resulting in large cutting resistance, which generates a large amount of cutting heat, and the heat transferred to the workpiece and the tool also increases accordingly, making the thermal deformation of the workpiece and the wear of the tool intensified, Water-based cutting fluids with cooling as the main factor and certain lubricating, cleaning and anti-rust effects should be selected, and continuous pouring with the large flow is required. When turning or other continuous machining or rough machining allowances are uniforms, the cutting heat is an important consideration, and the cooling effect of the cutting fluid is the first indicator to be measured.
  2. When milling or machining irregular shapes, uneven margins, and intermittent machining, the cutting speed is lower than that of continuous uniform machining, the impact of cutting heat is less than the impact of impact and vibration on the tool and the workpiece, and the lubrication of the cutting fluid And cooling must be balanced. When the machine tool conditions permit, you can use the inner hole car with internal liquid supply hole, boring cutter, and grooving cutter during hole processing and cutting, or use pressure supply liquid, and use the spray liquid supply when roughing difficult materials. All can play a better effect.
  3. Roughly processed workpieces generally have a machining allowance. At the same time, when processing difficult materials and non-ferrous metal materials, the surface roughness accuracy index is not high. Therefore, when machining difficult materials and non-ferrous metal materials, rough machining the chemical composition in the liquid is not high, and water-based extreme pressure emulsion can be used.
  4. When roughing cast iron and brittle nonferrous metals, the common feature of these materials during cutting is that the chips are crumbling, and the fine chips are flowing under the impact of the cutting fluid, and flow through the cutting fluid tank as the cutting fluid circulates Most will deposit, some will flow with the cutting fluid, and the small parts of the cutting fluid delivery tube will block the cooling nozzle and make the chips stick to the moving parts of the machine tool (such as the guide rail motion pair). At the same time, the chemical reaction between the cutting fluid and certain components in the cast iron causes the cutting fluid to deteriorate, causing the performance of the cutting fluid to deteriorate. Because the use of cutting fluid will bring these problems. Generally, do not use cutting fluid. To reduce the impact of dust and cutting heat, when conditions are available, you can consider using a dust extraction device to absorb dust, fine chips, and a part of heat. If cutting fluid is used, it is easy to use water-based cutting fluid, and the cutting fluid must be filtered and purified to prevent the deterioration of the cutting fluid and the prevention of concentration decline. When roughing, the concentration of cutting fluid is lower compared to finishing.

Six common ways to optimize roughing errors

Optimizing rough machining is three to four times faster than traditional machining methods, and makes the service life of cutting milling cutters in titanium alloy longer. The design of parts with straight prismatic walls requires a longer axial cutting depth and can engage all grooves on the milling cutter, which is ideal for optimizing roughing. In these cases, this strategy optimizes the often-challenging corner features and achieves high metal removal rates in superalloys and various stainless steels.

However, to avoid errors and imperfect results, for applications that are not in the optimal parameter range, the workshop should skip optimizing roughing. For example, in a complex three-dimensional mold cavity, optimized roughing may produce a stepped surface, requiring a lot of semi-finishing. In this case, high-feed roughing will produce better results.

  1. Excessively large span
    As the number of grooves increases, the span size must be reduced to maintain proper chip formation and surface finish at higher feed speeds. If the span is too large and the amount of metal removed is large, milling will generate more heat, forcing the feed rate to decrease. Reducing the span size can increase the cutting speed. When removing the same amount of material, more processes are required, but due to the increase in feed rate, the metal removal rate will be higher.
  2. Inferior arbor
    Optimized roughing requires a high-precision tool holder. Its specifications are similar to those of a hard-milling machine, including milling cutter runout less than 0.0004". If there is no precision fixture, milling will occur at a high feed rate optimized for roughing unsatisfactory vibration. Most shrink chucks, milling chucks, high-precision chucks, and selected end mill holders meet the accuracy standards for optimizing roughing. Milling cutters, chucks, and environmental maintenance are all critically important role, because dirty chuckholes, ambient temperature changes or unstable machine tool foundations will shorten the cutter life.
  3. Outdated milling machine
    The fast spindle and machine tool rigidity help provide better optimized roughing performance. The spindle must produce sufficient speed to support high feed rates, and the machine tool rigidity from the spindle bearing to the ball screw must minimize vibration to achieve smooth cutting, stable milling cutter life, and excellent part quality.
  4. Poor programming
    Manual programming and software designed for high-speed side milling cannot handle demanding machine tool movements that optimize roughing. Similarly, software designed for complex three-dimensional high-speed milling may not be able to maintain continuous engagement at narrow corners. To be successful, the process needs software that truly adapts to the process, not compromises.
  5. Improper milling depth
    The depth of cut plays a vital role in optimizing roughing. In 2xD and the entire edge length of the milling cutter, the effect of one pass is the best. A shallower radial span makes the cutting depth deeper, while a larger span value generates more heat, and requires a shallower cutting depth to achieve the same metal removal rate. Cutting depths better than 3xD will generate cutting pressure that exceeds the milling cutter's ability and causes offset. Chip breakers can minimize radial cutting pressure to reduce the possibility of deflection and assist in chip control.
  6. Unsuitable processing parameters
    The machine tool software contains default values for speed and feed, but these general parameters cannot predict the correct parameters for any particular cutting mill. Instead, the factory should ask their milling cutter supplier for recommended parameters derived from meticulous research and years of first-hand experience. Optimize cutting data for different milling cutter designs and their specific material groups. According to the different milling cutters selected according to the processing needs, the adjustment of the appropriate processing parameters can achieve the improvement of the processing efficiency.
Optimizing roughing: strategies to increase milling cutter life and workpiece quality.

Optimized roughing provides efficient results on applicable parts and features, including grooves with longer axial cutting depths, challenging corners and straight walls. This strategy can significantly improve part cycle time, surface finish, milling cutter life, and machine tool utilization. Taking the time to understand the workshop that optimizes rough machining can increase productivity, efficiency, and profitability, and these parts are the best choice for this strategy. To achieve the best results, the workshop should use the expertise of milling cutter suppliers to adjust their methods for individual work.

Published by Jul 07, 2020 Source :kknews, Source :baike.baidu, Source :endmills

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree