When it comes to cloud platforms for industrial use, there are a few choices to consider
Trend

When it comes to cloud platforms for industrial use, there are a few choices to consider

Amazon Web Services, Microsoft Azure, and Google Cloud account for 80% of the global cloud market. Which one is right for your operations?
Published: Mar 07, 2022
When it comes to cloud platforms for industrial use, there are a few choices to consider

Within the IIoT field, cloud platforms are often talked about. In this article, we will discuss some of the popular ones. Let’s dig in.

What Is a Cloud Platform?

A cloud platform refers to the operating system and hardware of a server in an Internet-based data center. It allows software and hardware products to co-exist remotely and at scale. The service offerings of each cloud provider in this analysis focus on three categories relevant to industrial companies:

  • Application Management/Enablement: Services aimed at enabling software developers to make and manage Internet of Things (IoT) applications. This may include rules engines, IoT development environments, or digital twins.
  • Device Management: Services designed to guarantee that connected devices are working properly by providing patches and updates for software running on the devices or their associated edge gateways. For example, this may include device monitoring, firmware updates, or deployment configuration management.
  • Data Management/Enablement: Services that provide the capability to store and analyze IoT-related data.
  • Currently, three large platforms hold 80% of the global cloud market: Amazon Web Services (AWS), Microsoft Azure, and Google Cloud. However, not all cloud platforms are created equal. While they offer similar baseline functionality, the platforms have carved out strategic niches for themselves, which render them better suited to some industries and use cases than others. IoT Analytics, an Internet of Things market research firm, has broken down the features of each of the major cloud platforms and provided commentary on their strengths and weaknesses.
  • Cloud-based technology offers end users in the manufacturing and processing industries a plethora of benefits. Perhaps most importantly, it enables a “single source of truth” for large datasets gathered from disparate systems and facilities. By synchronizing this data, cloud platforms can enable end-to-end planning and visibility that would be difficult or impossible if local, on-premises servers were used instead. Moreover, because cloud platforms ingest large quantities of data from many locations and companies, they can be used to train powerful machine learning applications that individual operations would not have the capacity to develop on their own.

Which Cloud Platform Is Right for Your Operations?

Amazon Web Services (AWS)

Amazon Web Services (AWS) was the first major platform to introduce public cloud service, having done so in 2006. However, it only began adding IoT-specific services in 2015, according to IoT Analytics.

It is known for its ease-of-use and flexibility compared to other platforms, as attention has been paid to making setup as intuitive as possible, and tutorials are openly offered by the company. That said, while AWS’ offerings are diverse, they are not as specialized as Microsoft Azure, particularly regarding applications for manufacturing, says IoT Analytics.

Most prominently, AWS is also known for the multitude of its offerings, with a total of 227 different cloud services being listed on its website in 2022. This is because AWS’ business model is most oriented toward application management/enablement, rather than device management or data management/enablement. Still, the platform has begun to move in this direction with the announcement of several new IoT services aimed at those in industry, including AWS IoT RoboRunner and AWS Private 5G.

Microsoft Azure

Although Microsoft Azure launched its public cloud four years after AWS, it introduced its IoT services only five months after AWS did. Since then, IoT Analytics says Microsoft has established an IoT-centric strategy catering specifically to enterprise clients and has managed to overtake AWS in this domain. The key differentiator featured by Microsoft Azure is its ability to integrate with business intelligence tools like Power BI. Microsoft Azure is focused on simplifying the way IoT is used by enterprises to achieve better interoperability, with a particular emphasis on Industrial IoT and edge computing.

For many customers, Microsoft Azure is easier to adopt because they are already using Microsoft Windows, Microsoft 365, and Microsoft Dynamics in their front-office operations. As a result, data pulled from OT (operations technology) into the Microsoft Azure cloud is easier to integrate with front-office IT systems. Moreover, Microsoft Azure offers industry-specific services that AWS lacks, such as Microsoft Cloud for Manufacturing. Whereas AWS features strong application management/enablement offerings, Microsoft Azure is geared toward device management with special attention being paid to industrial hardware and devices.

Google Cloud

In the global public cloud computing market, Google Cloud is a distant third to both AWS and Microsoft Azure, according to IoT Analytics. However, it is still the key supplier of several commonly adopted cloud technologies. Most prominently, the open-source container orchestration platform Kubernetes was designed by Google and has become the de facto standard for managing software containers in the cloud.

In addition, because of Google’s extensive experience in organizing search and other data, IoT Analytics notes that Google Cloud excels in analytics, big data, artificial intelligence, and machine learning. Of the three major cloud platforms explored in this article, compared to both AWS and Microsoft Azure, IoT Analytics says Google Cloud offers substantially fewer IoT-specific services overall. While there are several major IoT clients who use Google Cloud, the platform is less focused on industrial companies and moreso on IT companies such as Spotify and Snapchat.

Google Cloud is most oriented toward data management/enablement services as opposed to application management/enablement or device management services. Google Cloud’s IoT service is called Cloud IoT Core and is similar to Microsoft Azure’s IoT Hub. However, it integrates Google’s general analytics tools to enable further data processing and management functionality.

There are several types of cloud platforms. Not a single one works for everyone. There are several models, types, and services available to help meet the varying needs of users. When considering industrial cloud platforms, find the one that best fits your own needs.

Published by Mar 07, 2022 Source :Automation World

Further reading

You might also be interested in ...

Headline
Trend
The Application of Materials Science in Medical Device Manufacturing
In the field of medical device manufacturing, materials science plays a central role, directly impacting the safety, durability, and clinical performance of equipment. With the rapid development of smart healthcare and precision medicine, the demands for material performance have become increasingly stringent, particularly in the areas of biocompatibility, antimicrobial properties, and lightweight design.
Headline
Trend
Globalization and Steel-and-Glass Structures: Has the Architectural Divide Between East and West Disappeared?
In the West, concrete is a symbol of strength and efficiency, yet in the hands of a Japanese master, it can become a vehicle for Zen philosophy. In Asia, bamboo is revered as a sustainable material, but in the West, it is being redeveloped into a high-tech, eco-friendly solution. This article will delve into why architects from the East and West, even when faced with the same materials, can create two completely different architectural identities. The root of this lies in a fundamental difference in philosophy: the Eastern focus on living in harmony with nature and the Western drive to challenge physical limits.
Headline
Trend
Sewing Challenges in the Era of Sustainability: Balancing Durability and Eco-Friendliness
In discussions on sustainable textiles, sewing threads may seem insignificant, yet they play a crucial role. The material and production process of threads not only affect the durability of garments but also have long-term environmental impacts. In particular, under the influence of “fast fashion,” low-quality threads often break or fade easily, leading to garments being quickly discarded. In contrast, durable threads made from sustainable sources help extend the life cycle of clothing, reduce waste, and embody the concept of “slow fashion.”
Headline
Trend
Smart Breathing Masks: From Pandemic Essential to Intelligent Healthcare
The evolution of healthcare is a continuous response to the needs of the times. Breathing masks, a medical consumable we once paid little attention to, are a concrete example of this transformative wave. They are shifting from being a cold, professional tool to a gentle companion infused with intelligence and human-centered care.
Headline
Trend
Addressing Packaging Challenges Across Industries: Key Strategies for Food, Chemical, and Pharmaceutical Sectors
Do different industries face the same challenges? While the products of the food, chemical, and pharmaceutical industries vary greatly, their packaging lines share a common set of core challenges: how to ensure quality and safety while balancing high efficiency and regulatory compliance. As a result, customized packaging solutions have become the mainstream. Packaging machines are no longer single-function devices for "capping and filling" but rather comprehensive systems designed to meet the specific regulations of each industry.
Headline
Trend
The AI Revolution in Healthcare: Redefining the Future of Medicine
The explosive rise of artificial intelligence (AI) is ushering in an unprecedented transformation within the healthcare industry. No longer just a data analysis tool, AI has evolved into a smart assistant capable of deep collaboration with human experts and even operating independently. From diagnostic assistance to personalized treatment plans, AI is making healthcare more efficient, precise, and accessible to every patient.
Headline
Trend
Waterless Printing & Smart Tech: The New Eco-Standard for Label Printing
As global expectations for environmental protection rise, both consumers and brands are placing greater emphasis on the environmental impact of a product’s entire lifecycle—from production to recycling. Labels and stickers, as common products in the printing industry, have traditionally relied on large amounts of water, solvents, and energy in their production processes, creating a significant environmental burden. Today, sustainable printing is no longer an optional add-on but a key strategy for building brand trust and enhancing market competitiveness. Brands with clear eco-friendly initiatives are more likely to gain favor from both policymakers and the market, positioning themselves at the forefront of the global sustainability trend.
Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Smart Manufacturing in Printing: A New Era of Efficiency, Precision, and Sustainability
For over a century, the printing industry has been regarded as a relatively mature and stable sector. However, as market demand diversifies and the wave of digitalization accelerates, printing is undergoing a profound transformation. In the era of Industry 4.0, intelligence and automation have become the keywords of competitiveness. From AI (Artificial Intelligence) to IoT (Internet of Things), and the rise of post-press automation, these technologies are quietly reshaping every step of the printing process. Printing is no longer just about reproducing text and images; it is evolving into an era of “smart manufacturing” that is more efficient, precise, and environmentally friendly.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Agree