An Approach that Combines Mathematical Optimization and Machine Learning
Trend

An Approach that Combines Mathematical Optimization and Machine Learning

Machine learning (ML) is a type of artificial intelligence (AI) that allows businesses to make sense of large amounts of data and learn something. Through mathematical optimization, it can help to interpret the correctness of data and improve the decision-making basis of machine learning.
Published: Sep 20, 2022
An Approach that Combines Mathematical Optimization and Machine Learning

Mathematical Optimization and Machine Learning:

Mathematical optimization is a powerful decision-making tool. Mathematical optimization helps to make the best decision in the current situation by formulating the objective within the objective and specifying constraints and variables. The value of mathematical optimization has been demonstrated in many different industries such as aviation, logistics, power, and finance.

Machine learning is a subfield of artificial intelligence. Computers can recognize patterns in data and learn to predict the future, can generate clusters, detect anomalies, or generate new music or images. The possibilities are endless. Machine learning methods of supervised, unsupervised, and reinforcement learning can all be applied in a variety of industries, such as healthcare and even the arts. Machine learning models are all about probability and predicting the probability of something that will happen.

But be aware that when the data changes too much, the machine learning model becomes useless and the model needs to be retrained or rebuilt from scratch. Mathematical optimization requires clear instructions and a good mathematical description. It cannot handle unstructured data like machine learning. Also, if the problem becomes too large, you may need a commercial solver to solve the problem. Some problems are better suited for machine learning, while in other cases mathematical optimization is better. You should use machine learning when you want to discover patterns in data, find similar data samples, or predict the weather. Mathematical optimization is a better choice if you want to create a schedule, find the best location for a facility, or minimize the cost of a problem.

How do you Combine ML and MO?

  • Use machine learning predictions as constraints in the optimization model:
    This is the most straightforward way to combine ML and MO. Machine learning is first used to make predictions, which are used as input to an optimization problem. You can use the output of a machine learning model to set constraints.
  • Use optimization decisions as training features in machine learning models:
    The model is first optimized to make decisions, and the decisions are used as features in the machine learning model. In practice, this approach is less common as most decisions (MO) follow prediction (ML). But it is possible and may be useful in specific projects. Mathematical optimization is widely used in logistics. If you use optimization to decide how much supply you need to ship from the production plant to the market, it can save a lot of time, money, and resources.
  • Use the machine learning output to determine the scope of the mathematical optimization model:
    In addition to using machine learning outputs directly in optimization problems, you can also choose to combine them more separately. You use them in the same project, but not in the same process. You can use machine learning output to make mathematical optimization problems smaller. You can use machine learning to determine the scope of an optimized model that can be solved in less time.
  • Using optimization to solve machine learning research problems:
    This is an area of research that uses optimization to help solve machine learning challenges. You can use optimization to find an optimal set of parameters for a machine learning problem. ML and MO are tightly integrated here because you use optimization in your ML problem. When building regression models, removing irrelevant features will make the model more interpretable and less prone to overfitting the data. It is difficult to find the optimal subset of features, which is called the optimal subset selection problem. The speed of mixed integer programming has improved significantly over the past few decades, making it useful to test it on existing problems. Tested this issue and it works fine.

What is the Improvement of Machine Learning?

Building a machine learning application involves taking a single learner, such as logistic regression, decision tree, support vector machine, or artificial neural network, feeding it data, and using that data to teach it to perform a specific task.

Whereas ensemble methods involve using many learners to improve the performance of any one learner individually. These methods can be described as techniques that use a set of weak learners together to create a more powerful aggregated learner. Usually, ensemble methods are built by grouping variants of a single decision tree.

What are the Different Types of Machine Learning Systems?

The amount and type of supervision that a machine learning model requires during training.

  • Supervised learning:
    Machine learning systems are translated into computer algorithms. All data are labeled, telling the machine the corresponding value to provide the machine learning to use when judging the error in the output. This method is manual classification, such as telling the machine the standard answer, and the machine will answer according to the standard answer, and the correctness will be higher. If the data you use to feed the algorithm includes the desired solution, you are in front of a supervised learning system.
  • Unsupervised learning:
    This type of system is provided without the required solution (without the label). All data are not marked, and the machine classifies them by looking for the characteristics of the data. such as anomaly detection. This algorithm is useful for situations such as detecting product defects or product label records.
  • Semi-supervised learning:
    In this case, you have both labeled and unlabeled data. A small part of the data is marked, and the computer only needs to find the features through the marked data and classify the other data. So, a semi-supervised learning algorithm is a combination of an unsupervised algorithm and a supervised algorithm.
  • Batch learning:
    The system cannot do incremental learning, it must be trained using all available data. Since this is an expensive and time-consuming process, it is usually done offline. Once the system is in production, it will only apply what it has learned before, and not learn anymore.
  • e-learning:
    In online learning, the system is incrementally trained by providing data instances sequentially using mini-batches of data. Each learning step is fast and cheap, so the system can learn about new data instantly as it arrives. These algorithms are useful when your data changes rapidly or when computing resources are limited.
  • Example-based learning:
    In instance-based learning, the system learns from examples and then generalizes to new cases by comparing them to the learned examples using a similarity measure.
  • Model-based learning:
    Another way to generalize from a set of examples is to build a model of those examples and then use that model to make predictions.
Published by Sep 20, 2022 Source :towardsdatascience, Source :medium

Further reading

You might also be interested in ...

Headline
Trend
Modern Scaffolding: A Guide to Revolutionizing Construction Safety & Efficiency
From the construction of the ancient pyramids of Egypt to the rise of modern skyscrapers, one crucial temporary structure has always played the role of an unsung hero: scaffolding. This support system not only provides a safe foothold for workers but has also continuously evolved from a simple framework into a highly efficient, precise, and intelligent engineering system.
Headline
Trend
The Connection Between Medical Device Manufacturing and Machine Tools
The medical industry is experiencing rapid growth, driven by an aging population, rising chronic diseases, and technological advancements. The demand for high-precision medical devices is increasing, requiring manufacturing processes that ensure safety, reliability, and performance. Machine tools play a critical role in meeting these stringent requirements, enabling the production of complex medical instruments with exceptional accuracy.
Headline
Trend
Industrial Applications of CNC in the Robotic Arm Industry
CNC technology is an automated system that precisely controls machinery through computer programs, widely applied across various manufacturing sectors. The robotic arm industry encompasses both industrial uses (such as assembly and welding) and service applications (such as latte art or maintenance). In Japan, for instance, people with disabilities can remotely operate robots from home for work. This industry is visibly experiencing rapid growth. According to 2025 market data, the global robotics market is expected to reach USD 50.8 billion, with service robots accounting for USD 40.58 billion, demonstrating strong growth potential. The application of CNC in the robotic arm industry extends beyond component manufacturing to control systems and versatile task execution.
Headline
Trend
From Solar to Wind: The Heart of Green Energy
When discussing the energy transition, attention often falls on the surface area of solar panels, the blades of wind turbines, or the massive structures of nuclear power plants. Yet behind these world-changing energy systems, the critical components that drive solar, wind, and nuclear operations rely heavily on precision-manufactured CNC machines. Often hailed as the “brains of manufacturing,” these machines, with micron-level precision and highly automated capabilities, serve as the invisible engine powering technological breakthroughs and future innovations in the energy sector.
Headline
Trend
Seeing the Future in Wood: How CNC Technology is Transforming the Woodworking Industry
Traditional woodworking has long been synonymous with craftsmanship. In the past, the meticulous shaping of wood required artisans wielding hand planes, relying on time and experience to perfect every piece. Today, however, we live in an era of automation, and CNC (Computer Numerical Control) machinery has become the backbone of modern woodworking. Through precise computer control and high-speed processing, CNC enables wood cutting, carving, and complex shaping with exceptional accuracy and consistency. The woodworking industry is entering a new phase centered around digital control, ushering in higher quality and greater value-added production.
Headline
Trend
The “Comeback” of Print: Rediscovering Vitality in the Age of Scattered Attention
Driven by the wave of digitalization, we have long grown accustomed to a daily life where information constantly “scrolls” into our view. E-books, online news platforms, and short videos occupy our fragmented time, while print publications were once seen as relics destined to fade away. Yet history is often full of reversals—just as digital media reached its peak in speed and density, print quietly returned to the stage, even becoming an “irreplaceable choice” for certain audiences. This phenomenon not only challenges our linear imagination of media evolution but also reveals deeper psychological needs behind human reading behaviors.
Headline
Trend
Next-Gen Aviation: How Advanced Materials Are Revolutionizing Aircraft
As technology advances, the design philosophy behind modern passenger aircraft is undergoing a profound transformation. The evolution of aircraft materials is no longer just about reducing weight; it's a comprehensive revolution encompassing intelligence, safety, and sustainability. From groundbreaking composites to self-diagnosing smart sensors and manufacturing techniques built on a circular economy, future aircraft won't just be cold machines. They’ll be intelligent, self-aware, safer, and more eco-friendly flying bodies.
Headline
Trend
Optimizing IoT: From Connected Devices to the Future of the Internet of Things
The Internet of Things (IoT) is far more than just connecting your phone to Wi-Fi or making your appliances smart. It’s a massive intelligent ecosystem where everyday "things" can network, communicate, and share information. Simply put, IoT is a network of smart devices and sensors that can exchange data. In this hyper-intelligent ecosystem, every machine, every sensor, and even every piece of clothing seems to have a voice, sharing real-time data and working together. The IoT is changing our world and driving the next wave of technological revolution.
Headline
Trend
Overview of the Aerospace Industry Chain
The aerospace industry, as a cornerstone of modern high-tech manufacturing, encompasses civil aviation, defense, and space exploration, while representing a high degree of integration in materials science, precision machining, and intelligent manufacturing. The entire industry chain spans from upstream development and supply of high-performance materials, through midstream precision component manufacturing and modular assembly, to downstream final assembly, flight operations, and maintenance. Each segment imposes stringent requirements on safety, reliability, and performance. With the continuous expansion of the global aviation market and the rapid development of carbon-neutral initiatives, smart manufacturing, and digital technologies, the aerospace industry chain has become highly complex and interdependent.
Headline
Trend
Global Energy Industry Chain Structure and Development Trends
The energy industry serves as the core driving force of the global economy, with a vast and complex industrial chain that encompasses the entire process from resource development and energy conversion to end-use applications. Driven by climate change, energy security, and technological innovation, traditional fossil fuels and emerging renewable energy sources are increasingly intertwined, gradually reshaping the global energy landscape. In this context, the energy industry chain is not merely an extension of supply chain management but also a critical nexus connecting policy, finance, technology, and markets. A comprehensive understanding of its upstream and downstream structure, as well as its development trends, has become essential for evaluating energy transition and industrial competitiveness.
Headline
Trend
Smart Healthcare Industry Chain Analysis: Core Segments and Future Trends in Medical Device Manufacturing
Smart Healthcare has emerged as a key driver of transformation in the global medical industry. At its core, it integrates medical devices, information technology, and data analytics to enhance diagnostic accuracy, treatment efficiency, and real-time health management. The medical device manufacturing value chain not only covers the design and production of precision equipment but also involves sensing technologies, materials engineering, hardware–software integration, and clinical applications—forming a highly specialized and cross-disciplinary ecosystem.
Headline
Trend
Electronic Blueprint Returns: The New Role of PCBs in Smart Medical Devices
As medical devices move toward intelligence and wearability, printed circuit boards (PCBs) have become a core foundation. Medical-grade PCBs must not only meet stringent safety and reliability standards, but also leverage technologies such as rigid-flex boards, Lab-on-PCB, and Parylene coatings to achieve miniaturization, functional integration, and biocompatibility. These advancements elevate PCBs from mere circuit carriers to key platforms driving smart healthcare.
Agree