The Biggest Difficulty in Carbon Reduction in the Supply Chain
Market News

The Biggest Difficulty in Carbon Reduction in the Supply Chain

Supply chain carbon emissions are 11.4 times greater than operational carbon emissions. Therefore, if companies are to move towards net zero, the effectiveness of supply chain carbon reduction will be an important key. However, supply carbon reduction faces two major problems: inconsistent calculation methods and low data transparency.
Published: Oct 13, 2022
The Biggest Difficulty in Carbon Reduction in the Supply Chain

Supply chain carbon emissions are 11.4 times greater than operational carbon emissions. Therefore, if companies are to move towards net zero, the effectiveness of supply chain carbon reduction will be an important key. However, there are two major challenges in supply decarbonization, inconsistent calculation methods, and low data transparency. Why is carbon emission calculation easy to get stuck? How to solve it?

Who Can Say About Carbon Data?

At present, companies are doing carbon management, whether it is to follow ISO 14064 for the calculation of organizational carbon emissions, or to evaluate the carbon footprint of products, they all need to face the situation of asking for carbon emissions data from the upstream supply chain. For example, if the most downstream notebook computer brands want to calculate the carbon footprint of notebook computers, they need to ask dozens or hundreds of upstream suppliers of plastics, batteries, panels and other upstream suppliers for carbon emission data of the raw material manufacturing process, and These data are passed down layer by layer.

When upstream and downstream carbon data are difficult to obtain, many companies simply do not calculate the carbon footprint of their products, or only disclose a few available data. In addition, the correctness of the data provided by the supplier is also a big question, for example: whether the data has been verified by a third party.

Three Problems in Carbon Emissions Calculation

The current difficulties faced by supply chain carbon emissions calculation can be summarized into the following three reasons:

The Credibility of Carbon Data Is Doubtful:

Inconsistent calculation methods and inconsistency in database sources result in a reduction in the credibility of carbon data. In terms of calculation methods, when companies disclose upstream supply chain data, they may follow physical basis (calculated based on the carbon emission coefficient of the unit weight of raw materials), economic basis (calculated based on the carbon emission coefficient of the unit price of raw materials), and mixed methods. (Supplier data is matched with database data), or suppliers directly provide accurate carbon emission information for calculation. Different calculation methods may cause differences in calculation results, and it is difficult to ensure the consistency of results.

Inconsistent database sources, resulting in different emission coefficients, will also lead to different results. At present, there are quite a few databases to choose from in terms of international and domestic emission coefficients (such as: Environmental Protection Agency carbon footprint database, ITRI DoITPro database, Swiss Ecoinvent database, etc.), and different companies may use their own inventory experience. Or the data calculation logic is different, and the respective databases are used as the calculation basis, which eventually leads to inconsistent calculation results.

Difficult To Strike a Balance Between Commercial Confidentiality and Transparent Disclosure of Carbon Data:

The acquisition of carbon data needs to face the protectionism of various enterprises, and the acquisition of carbon emission data in the supply chain is even a gray area. How to improve the transparency of data sharing and solve the dilemma of commercial confidentiality risks is a common problem for enterprises.

Suppliers and brands may even stand on opposite sides. For suppliers, when brands require detailed carbon information, they may be less willing to provide them. But for downstream brands, the more detailed the information provided to me by the upstream, the more it can help me improve the transparency and accuracy of the information, and it can help me set the overall carbon emission management goals for the company in the future. Therefore, the balance in the middle depends on a requirement of consistency. In addition, brand owners and suppliers are concerned about the confidentiality of data. The two parties share process-related information, and how to ensure that confidentiality is not leaked is also a big problem.

The Systems are Incompatible and the Cost of Data Exchange is High:

Supply chains often span multiple stakeholders from different industries and regions, so there is a high cost of exchanging information. How to improve the interoperability of the data exchange process, including system docking and format structure compatibility, is very important.

For example, today the supplier provides raw materials to brand A and brand B at the same time, but the information format and quality required by the two companies are very different, which may cause trouble for the supplier. Therefore, in terms of the same industry chain, if the upstream, middle and downstream can reach a consensus on the data sharing structure, it should be able to shorten the data sharing communication time and speed up the efficiency of information provision.

Jointly Expose Primary Carbon Data from Upstream to Downstream, and Master the Carbon Footprint of Final Products

Based on carbon data sharing, data exchange should cover five aspects: general information, boundary description, data collection, quality and exchange, distribution principles, and presentation of carbon footprint results.

Each aspect has its own elements that should be disclosed. For example, in data collection, quality and exchange, enterprises should explain the use ratio of primary data, primary and secondary data sources, time range for primary and secondary data collection, and time representative of data collection.

In addition, compared with general brand owners who only ask them to provide carbon footprint calculation methods and results when they ask for the upstream supply chain, this standard encourages companies to use primary data, so it puts more emphasis on disclosing the primary data sharing ratio (Primary Data Share, PDS) to make carbon footprint calculation more accurate.

Under the global climate of carbon reduction, large upstream supply chain manufacturers have begun to require downstream supply chains to provide carbon inventory data. However, the lack of traces is a source of carbon anxiety for small and medium-sized enterprises. The supply chain is involved in the whole body, and the carbon data of each supplier will affect the setting of carbon reduction goals and results verification of the overall supply chain in the future.

Published by Oct 13, 2022 Source :Business Next

Further reading

You might also be interested in ...

Headline
Market News
Taiwan's Machine Tools Lead Smart Manufacturing: A Value Leap from Production Tools to Data Core
In 2025, as global manufacturing continues its rapid digital transformation, the machine tool industry is facing significant change. International buyers in aerospace, electric vehicles, and high-end electronics are increasingly prioritizing smart services and data applications over mere machining precision. Taiwan's machine tool industry is actively integrating the Internet of Things (IoT), artificial intelligence, and big data technology, expanding from traditional hardware manufacturing into the smart solutions sector. This move helps global manufacturing clients boost production efficiency and enhance equipment maintenance management. This article will delve into how Taiwan's machine tool industry is becoming an indispensable smart partner for global manufacturing, delivering sustained value.
Headline
Market News
Emerging Technologies and Market-Driven Integration of the Machine Tool Industry Chain
In the fast-evolving global manufacturing landscape, electric vehicles (EVs), semiconductors, and aerospace industries are emerging as key drivers of technological upgrades. These sectors share a common requirement for complex and high-precision components, which conventional machining methods alone can no longer fully address. This demand is reshaping the machine tool industry chain, from upstream components to midstream machine manufacturing and downstream applications, all showing strong trends toward integration and intelligent development.
Headline
Market News
From Cold Chain to Retail: How Smart Labels Are Reshaping Supply Chains
As the IoT rapidly advances, traditional printed labels are evolving into intelligent “smart tags.” No longer merely adhesive printings, these tags embed chips and sensor modules to enable real-time product tracking, authentication, and even consumer interaction. This technological shift is reshaping operations across logistics, retail, healthcare, and manufacturing.
Headline
Market News
Accelerated Medical Transformation: Challenges Solved? Unveiling the New Market Blueprint for 2025
In 2025, the global healthcare industry is entering a critical period of rapid technological innovation and profound market transformation. While facing multiple challenges such as labor shortages, rising costs, and policy uncertainties, the industry is also embracing growth opportunities driven by cutting-edge technologies like artificial intelligence, regenerative medicine, and bioprinting. With continued active investment in health tech, the medical market is demonstrating strong resilience, painting a new blueprint for the future.
Headline
Market News
Can CNC Technology Make Food Processing Faster and Safer?
The core requirements for food processing equipment lie in safety, efficiency, and durability. CNC (Computer Numerical Control) technology, with its precision and automation advantages, has become a key enabler in the manufacturing of slicers, packaging machines, mixers, and other equipment. With the global food processing equipment market projected to grow from USD 55 billion in 2023 to USD 75 billion by 2030 (a CAGR of approximately 4.5%), CNC is driving the industry toward greater intelligence and efficiency.
Headline
Market News
Do You Know the Manufacturing Secrets Behind Sports Equipment?
In the sports equipment industry, CNC (Computer Numerical Control) machines are the key driver for high product performance, extended durability, and enhanced market competitiveness. From golf clubs to bicycle frames, CNC machining combines high precision and flexibility, not only meeting the strict quality demands of professional athletes but also providing efficient and customizable manufacturing solutions for buyers.
Headline
Market News
Supply Chain Restructuring under the US–China Tech War: How Machine Tools Empower Autonomous Electronics Manufacturing
Globalized supply chains were originally driven by an “efficiency-first” mindset. However, in the context of the US–China tech competition, geopolitical tensions, export controls, and technology embargoes have placed multiple pressures on the electronics industry, including chip restrictions, equipment limitations, and trade barriers. Traditional production models, which rely on concentration in a single region, have become increasingly unsustainable. These developments have prompted companies to recognize that, beyond cost reduction, ensuring supply chain stability and control over autonomy is now far more critical.
Headline
Market News
Nurturing Talent in Taiwan's Manufacturing Sector: The Government's Strategy for a Competitive Future
The global high-tech sector is at a critical crossroads, facing the dual challenges of rapid technological iteration and a severe talent shortage. In Taiwan, a world-renowned hub for precision manufacturing, the situation is no different. As the end-user market demands higher precision processing and the wave of smart manufacturing and digital transformation sweeps in, the government has long recognized that nurturing talent is paramount to maintaining the nation's industrial competitiveness.
Headline
Market News
2025 Continued Innovation in Healthcare Driving Market Growth
In 2025, the global healthcare industry is experiencing a profound revolution, fueled by the deep integration of digital technology and AI. As medical service models rapidly evolve, institutions are adopting innovations to enhance diagnostic accuracy, treatment efficiency, and patient experience while also controlling costs. This article analyzes the key drivers, applications, and future challenges in the 2025 healthcare market, offering a comprehensive insight into industry trends and growth potential.
Headline
Market News
Elevating Drone Manufacturing: The Machining Advantages of CNC Machines
With the rapid expansion of the unmanned aerial vehicle (UAV) industry, CNC (Computer Numerical Control) machines play an indispensable role in precision manufacturing. According to market research firm Grand View Research, the global drone market is expected to grow from approximately USD 40 billion in 2023 to USD 90 billion by 2030 a remarkable trajectory. CNC machining’s high-precision capabilities, from structural components and electronic parts to critical modules, can directly impact drone performance while linking the entire supply chain from raw materials to global trade.
Headline
Market News
U.S.–China Trade War and the Russia–Ukraine Conflict: Challenges and Adjustments in the Textile Raw Material Supply Chain
The textile industry has always been one of the most globalized sectors, with raw materials often crossing multiple borders before reaching the apparel market. However, in recent years, growing geopolitical uncertainties—most notably the U.S.–China trade war and the Russia–Ukraine conflict—have created unprecedented challenges for textile supply chains. Trade frictions between the U.S. and China have restricted exports of cotton and fabrics, forcing brands to reassess sourcing strategies. Meanwhile, the Russia–Ukraine war has driven up energy and chemical raw material prices, indirectly raising costs for synthetic fibers such as polyester and nylon. Together, these factors are pushing the global textile industry to rethink supply chain resilience and its future trajectory.
Headline
Market News
From Policy to Production: How Smart Machine Monitoring is Reshaping Global Factories
In the global manufacturing industry’s shift toward Industry 4.0, smart upgrades are no longer optional—they’re essential for staying competitive. At the core of this transformation is the conversion of traditional factories into data-driven, smart ecosystems. This complex undertaking isn’t something companies can tackle alone. A series of policies and international collaborations, from governments’ high-level strategies to industry alliances’ communication standards, are paving the way for smart manufacturing. This allows technologies like remote monitoring and predictive maintenance to move from blueprints to reality more quickly, fundamentally changing how factories operate worldwide.
Agree