What Is Welding About?
Knowledge

What Is Welding About?

Welding is a technique and process for joining metals or other thermoplastics by heating or pressing.
Published: Aug 27, 2021
What Is Welding About?

What Is Welding?

Welding is a technique that is generally used for binding materials together through the use of heat, pressure, or both to fuse two parts. Welding is generally used on metals and thermoplastics, but can also be used on wood.

What Is A Welding Process?

The welding process is related to the welding method used and other factors engaged, and the operation needs to be determined according to the material, brand, chemical composition, structure type of the weldment, and welding performance requirements of the welded workpiece. First of all, it is necessary to determine the welding method, such as manual arc welding, submerged arc welding, argon tungsten arc welding, MIG welding, etc. There are many types of welding methods, which can only be selected according to specific conditions. After the welding method is determined, the welding process parameters are formulated. The types of welding process parameters are different. For example, manual arc welding mainly includes electrode type, diameter, current, voltage, welding power source, polarity connection method, number of welding layers, number of passes, Inspection methods, etc.

A. Approaches of Welding Process
  • Heat the workpiece to be joined to partially melt it to form a molten pool. The molten pool will be joined after cooling and solidification. If necessary, a molten filler can be added to assist.
  • With soft soldering and brazing, the solder has a lower melting point than the workpiece. You do not need to melt the workpiece itself, but by heating and melting the solder, capillary action of the solder will connect the workpieces.
  • At a temperature equal to or lower than the melting point of the workpiece, the process is supplemented with high pressure, superimposed extrusion, or vibration. The two workpieces are mutually infiltrated and joined, (such as in forge welding or solid welding).
B. Types of Welding Processes

Welding can be subdivided into other special welding methods, such as gas welding, resistance welding, arc welding, induction welding, and laser welding. There are many energy sources for welding, including a gas flame, electric arc, laser, electron beam, friction, and ultrasonic. In addition to being used in factories, welding can also be carried out in a variety of environments, such as the field, underwater, and space. No matter where it is, welding may bring danger to the operator, so appropriate protective measures must be taken when welding. The possible harm to the human body caused by welding includes burns, electric shock, visual impairment, inhalation of toxic gases, excessive ultraviolet radiation, etc.

C. Operations of Welding Processes

Fusion welding is a method in which the joint of the workpiece is heated to a molten state during the welding process, and the welding is completed without pressure. During fusion welding, the heat source rapidly heats and melts the joint of the two workpieces to be welded to form a molten pool. The molten pool moves forward with the heat source and forms a continuous weld after cooling to connect the two workpieces into one. In the fusion welding process, if the atmosphere is in direct contact with the high-temperature molten pool, the oxygen in the atmosphere will oxidize metals and various alloying elements. Atmospheric nitrogen, water vapor, etc. enter the molten pool, and will also form pores, slag inclusions, cracks, and other defects in the weld during the subsequent cooling process, deteriorating the quality and performance of the weld.

In order to improve the welding quality, various protection methods have been developed. For example, gas-shielded arc welding is to isolate the atmosphere with argon, carbon dioxide, and other gases to protect the arc and molten pool rate during welding; another example is to add iron titanium powder with a high affinity for oxygen to the electrode coating to deoxidize when welding steel. It can protect the beneficial elements such as manganese and silicon in the electrode from oxidation and enter the molten pool, and obtain high-quality welds after cooling.

Pressure welding is to make two workpieces realize interatomic bonding in a solid state under pressure. This is also called solid-state welding. The commonly used pressure welding process is resistance butt welding. When the current passes through the connecting end of the two workpieces, the temperature rises due to the large resistance. When heated to a plastic state, the connection becomes a whole under the action of axial pressure. The common feature of various pressure welding methods is to apply pressure without adding filler material during the welding process. Most pressure welding methods such as diffusion welding, high-frequency welding, cold pressure welding, etc. have no melting process, so there is no problem of beneficial alloy elements burning like fusion welding and harmful elements intruding into the weld, thus simplifying the welding process, and improving welding safety and sanitation conditions. At the same time, because the heating temperature is lower than that of fusion welding and the heating time is shorter, the heat-affected zone is small. Many materials that are difficult to weld by fusion welding can often be welded by pressure welding to form a high-quality joint with the same strength as the base material.

Welding Quality

The main indicator to measure the quality of welding is the strength of the solder joint and its surrounding materials. There are many factors affecting strength, including the welding process, energy injection form, base material, filler material, flux, joint design form, and the interaction between the above factors. Usually, destructive, or non-destructive testing is used to check the quality of welding. The main objects of testing are the defects of the solder joints, the degree of residual stress and deformation, and the nature of the heat-affected zone. Welding inspection has a set of specifications and standards to guide operators to adopt appropriate welding processes and judge welding quality.

The Trends of Welding Processing

The economic cost of welding is an important factor in its industrial application. There are many factors that affect the cost of welding, such as the cost of equipment, manpower, raw materials, and energy. The cost of welding equipment varies greatly for different processes. Manual arc welding and combustible gas welding are relatively inexpensive, while laser welding and electron beam welding are relatively expensive. Due to the high cost of certain welding processes, they are generally only used to manufacture important parts. The cost of automatic welding equipment and welding robots is also very high, so their use is also restricted accordingly. The labor cost depends on the welding speed, hourly wages, and working hours for welding and subsequent processing. The cost of raw materials includes the cost of purchasing base materials, weld filler materials, and shielding gas. The energy cost depends on the arc working time and the energy demand of the welding.

For manual welding, labor costs often account for a large part of the total cost. Therefore, the reduction of manual welding costs often focuses on reducing the welding operation time. Effective methods include increasing the welding speed and optimizing welding parameters. DE slagging after welding is also time-consuming and laborious work. Therefore, reducing welding slag can improve safety, environmental protection, reduce costs, and improve welding quality. Mechanization and automation can also effectively reduce labor costs, but on the other hand, it increases equipment costs and requires additional equipment installation and commissioning time. When products have special needs, the cost of raw materials often rises accordingly. The energy cost is usually not important, because it generally only accounts for a few percentage points of the total cost.

In recent years, in order to reduce the labor cost of welding in high-end products, resistance spot welding and arc welding in industrial production have adopted many new forms of automatic welding equipment, (especially in the automotive industry). Welding robots can effectively complete welding, especially spot welding. With the advancement of technology, welding robots have also begun to be used for arc welding. The cutting-edge development areas of welding technology include welding between special-shaped materials, new welding processes, such as friction stir welding, magnetic pulse welding, heat conduction seam welding, and laser hybrid welding. Other research focuses on expanding the application range of existing welding processes, such as the application of laser welding to the aerospace and automotive industries. Researchers also hope to further improve the welding quality, especially to control the microstructure and residual stress of the weld, to reduce the deformation and fracture of the weld.

Published by Aug 27, 2021 Source :haori

Further reading

You might also be interested in ...

Headline
Knowledge
From Marine Polysaccharides to Pet Wellness: A New Milestone in Fucoidan Applications
In recent years, companion animals have come to occupy an increasingly significant role in human life—not merely as pets, but as integral members of the family. As pet owners place growing emphasis on animal health and longevity, the demand for functional health ingredients has surged. Among these, fucoidan, a marine-derived polysaccharide extracted from brown seaweed, has emerged as a key player in the field of pet nutritional science. Recognized for its immunomodulatory, antioxidant, and cellular repair properties, fucoidan is redefining the standards for preventive care and holistic wellness in companion animals.
Headline
Knowledge
Eco-Friendly Tableware and Food Safety: A Choice for Both the Environment and Health
With a global increase in plastic reduction and environmental awareness, a growing number of businesses and consumers are opting for eco-friendly tableware made from natural or biodegradable materials to replace traditional plastic items. Eco-friendly tableware—such as that made from bamboo fiber, sugarcane bagasse, leaf fiber, or PLA—typically does not contain harmful substances like plasticizers or BPA, thus reducing potential health risks. According to the European Union's Food Contact Materials Regulation (EC No. 1935/2004), "food contact articles shall not transfer their constituents to food in quantities that could endanger human health." However, when production processes or manufacturing technologies are inadequate, eco-friendly tableware can still pose food safety risks.
Headline
Knowledge
Food Cleanliness and Its Impact on the Human Body: A Farm-to-Table Guarantee
The cleanliness of food, defined as the hygienic state of food surfaces and production environments, is crucial for consumer health. The World Health Organization (WHO) reports that globally, approximately 600 million people fall ill each year from consuming contaminated food, leading to about 420,000 deaths.
Headline
Knowledge
Green Printing Transformation Becomes the Core Competitiveness of a Sunset Industry
As global concerns over climate change, plastic pollution, and carbon emissions intensify, the printing industry is undergoing a profound green transformation. From packaging and commercial publishing to labels and promotional materials, green printing is no longer just an added value—it's becoming a fundamental requirement for brand compliance and supply chain standards.
Headline
Knowledge
From Equipment to System: Building a Highly Consistent and Maintainable Smart Coffee Platform
In today’s retail and service environments, smart coffee solutions that offer high consistency, scalability, and ease of maintenance have become key criteria for commercial adoption. Based on advanced automation control technologies and incorporating Specialty Coffee Association (SCA) brewing standards, this platform integrates modular hardware architecture, data-driven algorithms, and cloud-based remote management. It enables comprehensive deployment—from standalone machines to full-site integration. This system-oriented design not only enhances product stability and flavor reproducibility, but also significantly reduces maintenance costs, making it an ideal solution for chain retailers, branded venues, and smart vending scenarios.
Headline
Knowledge
Development Trends of Intelligent Industrial Lifting Equipment
As global manufacturing accelerates its transition toward smart transformation, the demand for industrial lifting equipment and lubrication systems continues to rise. The Taiwan and Asia-Pacific markets are steadily expanding, with increasing demand for high-safety and precision-controlled lifting and lubrication equipment in the automotive repair and industrial manufacturing sectors. The advancement of smart manufacturing has promoted the integration of intelligent sensing and remote monitoring technologies, making these devices the core driving force of smart factories, fueling rapid market growth and serving as a key driver for Fugimaku’s continuous innovation and development.
Headline
Knowledge
The Tough Hero of the Tool World: The Secrets of Tungsten Carbide
In the world of industrial cutting tools, tungsten carbide is like a superhero: extremely hard, wear-resistant, heat-tolerant, and remarkably tough, able to stay sharp without chipping during high-speed cutting and prolonged machining. From rough milling to precision engraving, its variety of tool shapes and coating technologies allow it to tackle diverse challenges. Its applications even extend beyond cutting tools to wear-resistant parts, mining bits, and even fashion accessories. Whether in automotive components, aerospace molds, or everyday aesthetics, tungsten carbide stands as a reliable powerhouse in modern manufacturing. This article will take you deep into the material’s properties, machining principles, and real-world applications.
Headline
Knowledge
Professional Analysis and Application Value of Pneumatic Tools
Pneumatic tools are a category of industrial equipment powered by compressed air, widely used across manufacturing, assembly, maintenance, and construction sectors. Compared with electric tools, pneumatic tools are lighter in weight, deliver consistent output, offer high durability, and provide superior safety. These advantages make them the preferred choice for professionals in scenarios that require prolonged, high-frequency, and high-precision operations.
Headline
Knowledge
Common Chronic Diseases and Their Characteristics: A Personalized Health Management Guide
In pursuit of a fast-paced life, we often overlook our body's warning signs. According to the Health Promotion Administration, Ministry of Health and Welfare, chronic diseases like hypertension and diabetes have become a hidden threat to public health. Though these conditions progress slowly, long-term neglect can lead to serious consequences such as heart disease or stroke. This article will help you understand their causes and provide a simple “self-health management process” to proactively take control of your health.
Headline
Knowledge
Professional Analysis of Freight Logistics: From Transportation Management to Smart Supply Chains
Freight logistics is a critical component of modern supply chains. It encompasses not only the transportation of goods from origin to destination but also transportation planning, risk management, warehousing, and the integration of information technology. Professional freight operations can significantly enhance transportation efficiency, reduce costs, and ensure the safety of goods.
Headline
Knowledge
Changeable RF Filter Output Formats: A Detailed Overview
The article explores the significance of RF filter output formats and their impact on performance, reliability, and application. It discusses three main types: Connector Type (robust connections for high-power applications), SMD Type (compact and suitable for PCB integration), and Pin Type (durable through-hole mounting for industrial and automotive use). Key challenges include maintaining consistent impedance matching, minimizing insertion loss, and ensuring mechanical strength across formats. Choosing the right format depends on the device, installation, and operational requirements, while designing a single filter that performs well across all formats remains a technical challenge in RF engineering.
Headline
Knowledge
PD Chargers and PD 3.1 Explained: Everything You Need to Know
The article provides an in-depth overview of USB Power Delivery (PD) and the latest PD 3.1 standard. USB PD enables faster and more efficient device charging, and PD 3.1 expands power delivery up to 240 watts, supporting high-power devices like gaming laptops, large monitors, and e-scooters. Key features include adjustable voltage, bidirectional power, and backward compatibility with older cables. PD 3.1 simplifies charging, reduces the need for multiple chargers, and improves efficiency for high-capacity devices. Its adoption is driving market growth and moving the industry toward a universal, streamlined charging standard.
Agree