Introduction to the Different Types of Welding
Knowledge

Introduction to the Different Types of Welding

Welding is a manufacturing process and technology that uses heat, high temperature or high pressure to join metal or other thermoplastic materials such as plastics. According to the state of the metal in the welding process and the characteristics of the process, the welding methods can be divided into three categories: welding, pressure welding and braze welding.
Published: Jan 04, 2023
Introduction to the Different Types of Welding

Welding

The workpieces to be joined are heated to partially melt to form a molten pool, and then joined after the molten pool is cooled and solidified. If necessary, fillers can be added to assist.

  1. Laser welding
  2. Laser welding uses the heat generated by the focused laser beam as the energy source to bombard the workpiece for welding. It can weld various metal materials and non-metal materials such as carbon steel, silicon steel, aluminum and titanium and their alloys, tungsten, molybdenum and other refractory metals and dissimilar metals, as well as ceramics, glass and plastics. At present, it is mainly used in electronic instruments, aviation, aerospace, nuclear reactors and other fields. Laser welding has the following characteristics:

  • The energy density of the laser beam is high, the heating process is extremely short, the solder joints are small, the heat-affected zone is narrow, the welding deformation is small, and the dimensional accuracy of the weldment is high.
  • It can weld materials that are difficult to weld by conventional welding methods, such as welding refractory metals such as tungsten, molybdenum, tantalum, and zirconium.
  • Non-ferrous metals can be welded in air without additional shielding gas.
  • The equipment is complicated and the cost is high.

  • Gas welding
  • Gas welding is mainly used in the welding of thin steel plates, low melting point materials (non-ferrous metals and their alloys), cast iron parts and hard alloy tools, as well as repair welding of worn and scrapped parts, flame correction of component deformation, etc.

  • Arc welding
  • Arc welding can be divided into manual arc welding and submerged arc welding.
    • Manual arc welding can perform multi-position welding such as flat welding, vertical welding, horizontal welding and overhead welding. In addition, because the arc welding equipment is portable and flexible in handling, welding operations can be performed in any place with power supply. It is suitable for welding of various metal materials, various thicknesses and various structural shapes.
    • Submerged arc welding is generally only suitable for flat welding positions, and is not suitable for welding thin plates with a thickness less than 1mm. Due to the deep penetration of submerged arc welding, high productivity and high degree of mechanized operation, it is suitable for welding long welds of medium and thick plate structures. The materials that can be welded by submerged arc welding have developed from carbon structural steel to low alloy structural steel, stainless steel, heat-resistant steel, etc., as well as certain non-ferrous metals, such as nickel-based alloys, titanium alloys, and copper alloys.

  • Gas electric welding
  • Arc welding that uses external gas as the arc medium and protects the arc and welding area is called gas shielded arc welding, or gas electric welding for short. Gas electric welding is usually divided into non-melting electrode (tungsten electrode) inert gas shielded welding and melting electrode gas shielded welding, oxidizing mixed gas shielded welding, CO2 gas shielded welding and tubular wire gas shielded welding according to whether the electrode is molten or not and the shielding gas is different.

    Among them, non-melting extremely inert gas shielded welding can be used for welding almost all metals and alloys, but due to its high cost, it is usually used for welding non-ferrous metals such as aluminum, magnesium, titanium and copper, as well as stainless steel and heat-resistant steel. In addition to the main advantages of non-melting electrode gas shielded welding (welding in various positions; suitable for welding of most metals such as non-ferrous metals, stainless steel, heat-resistant steel, carbon steel, and alloy steel), it also has faster welding speed and higher deposition efficiency.

  • Plasma arc welding
  • Plasma arc is widely used in welding, spraying and surfacing. It can weld thinner and thinner workpieces (such as welding of extremely thin metals below 1mm).

  • Electroslag welding
  • Electroslag welding can weld various carbon structural steels, low-alloy high-strength steels, heat-resistant steels and medium-alloy steels, and has been widely used in the manufacture of boilers, pressure vessels, heavy machinery, metallurgical equipment and ships, etc. middle. In addition, electroslag welding can be used for large-area surfacing and repair welding.

  • Electron beam welding
  • Electron beam welding equipment is complex, expensive, and requires high maintenance; the assembly requirements of weldments are high, and the size is limited by the size of the vacuum chamber; X-ray protection is required. Electron beam welding can be used to weld most metals and alloys and workpieces requiring small deformation and high quality. At present, electron beam welding has been widely used in precision instruments, meters and electronic industries.

    Pressure Welding

    The welding process must exert pressure on the weldment, which is divided into resistance welding and ultrasonic welding.

    1. Resistance welding
    2. There are four main resistance welding methods, namely spot welding, seam welding, projection welding and butt welding. Spot welding is suitable for stamped and rolled thin plate members that can be overlapped, the joints do not require airtightness, and the thickness is less than 3mm. Seam welding is widely used in sheet welding of oil drums, cans, radiators, aircraft and automobile fuel tanks. Projection welding is mainly used for welding stamping parts of low carbon steel and low alloy steel. The most suitable thickness for plate projection welding is 0.5-4mm.

    3. Ultrasonic welding
    4. Ultrasonic welding is in principle suitable for welding most thermoplastics.

    Braze Welding

    Use a metal material with a lower melting point than the base material as the base material, use the liquid base material to wet the base material, fill the gap, and diffuse with the base material to realize the connection of the weldment.

    1. Flame annealing welding
    2. Flame annealing welding is suitable for annealing welding of materials such as carbon steel, cast iron, copper and its alloys. An oxyacetylene flame is a commonly used flame.

    3. Resistance welding
    4. There are two methods of resistance welding: direct heating and indirect heating. Indirect heating resistance welding is suitable for welding of weldments with large differences in thermophysical properties and thickness.

    5. Induction welding
    6. Induction welding is characterized by fast heating, high efficiency, local heating, and easy automation. According to the protection method, it can be divided into induction welding in air, induction welding in shielding gas and induction welding in vacuum.

    Published by Jan 04, 2023 Source :twgreatdaily

    Further reading

    You might also be interested in ...

    Headline
    Knowledge
    Understanding the Logistics and Transportation Sector
    As the number of e-commerce transactions continues to surge, there is a parallel increase in the demand for logistics services. Amidst the ongoing transformation and upgrade of the industry, the integration of smart technology has emerged as a pivotal factor in driving its development.
    Headline
    Knowledge
    Understanding Mechanism Design and Its Practical Applications
    Creating an effective mechanism design entails thoughtful consideration of factors such as materials, specifications, precision, manufacturing processes, and functionality. Moreover, it must be cost-effective to ensure the development of a successful mechanism design.
    Headline
    Knowledge
    Understanding the Granulation Process
    Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
    Headline
    Knowledge
    What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
    The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
    Headline
    Knowledge
    How Does the Electroplating Process Work for ABS Plastic?
    Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
    Headline
    Knowledge
    What Are the Fundamentals and Benefits of Choosing between Liquid and Powder Coating?
    Metal fabricators aiming to venture into finishing processes should familiarize themselves with two prevalent options—liquid and powder coating—along with the prerequisites necessary for a company seeking to employ either or both.
    Headline
    Knowledge
    Anticipating the Emerging Trends in the Global Laser Industry
    In light of the evolving global industry demands, the laser industry and technology are shifting their focus towards meeting the requirements of 5G semiconductors and smart vehicle processes. While Taiwan's laser industry has a well-established foundation built over the years, sustaining international competitiveness necessitates a proactive advancement in independent laser technology.
    Headline
    Knowledge
    What is the Purpose of Surface Treatment for Metals?
    Defects are bound to arise during the reprocessing of mechanical equipment or parts related to metal. As a result, the final item's surface treatment process plays a crucial role, serving the dual purpose of enhancing aesthetics and providing protection. This process not only improves the performance of metal parts but also helps prevent rust.
    Headline
    Knowledge
    Selecting a Hydraulic Press and Understanding its Manufacturing Procedure
    Hydraulic presses find applications in compaction, assembly, pressing, forming, embossing, and stretching. They play a crucial role in compaction within the cosmetics sector, assembly in the automotive industry, molding of electronic products, and stamping in the home appliance industry.
    Headline
    Knowledge
    Introduction to RFID Tags: The Significance of RFID in Modern Retail Supply Chains
    There are two types of RFID systems: passive and active. For those unfamiliar with RFID, you may be curious about the distinctions between these types and which one suits your application best. In the following, we offer a brief explanation.
    Headline
    Knowledge
    Anticipating the Emerging Trends in the Global Laser Industry
    In light of the evolving global industrial demands, the laser industry and technology are shifting towards meeting the requirements of 5G semiconductors and advanced processes for smart vehicles. While Taiwan's laser industry has made substantial progress over the years, maintaining alignment with international advancements necessitates a proactive push in independent laser technology.
    Headline
    Knowledge
    Exploring Sheet Metal: Defining Sheet Metal and its Various Applications, with a Focus on Laser Applications
    The term originates from English, known as plate metal. Typically, certain metal sheets undergo plastic deformation either manually or through die-stamping to attain the desired shape and size. These sheets can then undergo additional shaping through welding or a limited amount of mechanical processing to create more intricate components.
    Agree