What is Chip Formation?
Knowledge

What is Chip Formation?

In the chip formation process, materials are cut through mechanical means by using tools like milling cutters, saws, and lathes. It is an integral part of the engineering of developing machines and cutting tools.
Published: Jan 03, 2023
What is Chip Formation?

What is Chip Formation?

Chip formation is part of the process of mechanically removing material using tools such as saws, lathes, and milling cutters. Especially when cutting metal with the new high-speed steel tools, which are faster and more powerful.

Chip formation during machining:

Proper chip formation and evacuation ensure that the cutting process proceeds undisturbed, maintains operator safety, and does not damage the machine tool and workpiece. During machining, the removed material is plastically deformed and sheared in the shear plane and exits as long or short chips depending on the workpiece material. Processing consumes most of its energy in this shear zone. When processing incompressible materials, the material deforms in the shear plane without volume change. The deformation is assumed to occur as simple shear, and a stack of layers of material is placed in the material to be chipped. Each layer is parallel to the shear plane. Chip formation can be exemplified by a shearing process of a material layer.

What Chip Classifications are There?

The type of chip formed depends on many factors, including tool and material. The major factors are the angle formed by the tool facets and the angle between that angle and the surface. The sharpness of a cutting tool generally does not define the type of chip, but rather a clear distinction between the quality and type of chips. Dull tools produce degraded chips that are large, tear, and vary from one form to another, often leaving a poor-quality finish that signifies variation.

  • Type I chip:
    Type I chips form when the material splits before the cutting edge, perpendicular to the surface due to some upward wedging action of the tool exceeding the tensile strength of the material. As such, they are especially important in fibrous materials, where individual fibers are strong, but can be pried open relatively. Type I chips are formed when cutting tools with shallow cutting angles. Type I chips may form long, continuous chips whose size is limited only by the length of the cut. This is ideal chip formation for shavings, especially those produced by a well-adjusted flat surface with finely adjusted nozzles.
  • Type II chip:
    Type II chips are formed when the wedge shape of the cutter corners creates a shear force. Material fails along the short angle plane, starting at the apex of the tool edge, diagonally up and forward to the surface. The material deforms along this line, forming chips that curl upward. These chips are usually formed by intermediate cutting corners. Type II chips may form in ductile materials. Type II chips may form long, continuous chips.
  • Type III chip:
    Compressive failure of Type III chip-forming material, before a relatively obtuse cutting angle, approaches 90°. In some brittle or non-ductile materials, this may form acceptable swarf, usually fine dust. This chip consists of routers. It is formed by woodworking scrapers, although when properly sharpened and used they form a type III chip so thin that it looks like a well-formed type II chip. Their debris is thin enough and the compression failure volume is small enough to serve as a Type II well-defined shear plane.

The Basic Form of Chips:

  • Discontinuous or Segmental Chips:
    Indicates that the chip breaks into small pieces after it breaks away from the front of the tool. This is more likely to be the case with more brittle materials, such as cast iron or bronze. Because the chip is broken after it is formed, it will not exert pressure on the tool surface, and the remaining irregular surface can be easily cut flat by the blade, so a smoother surface can be obtained, and because the pressure on the tool surface is small, the wear it is small, so the tool life is longer. Non-continuous chipping of materials with a higher coefficient of friction or higher ductility is indicative of poor cutting conditions.
  • Continuous Chips:
    For materials with low ductility and low coefficient of friction, during cutting, the metal continuously deforms and flows on the tool surface, and acts stably on the tool. Therefore, no matter in terms of surface finish or tool life, it is a reasonable chip, and it is convenient for the analysis of cutting force.
  • Continuous Chip with Built-Up-Edge:
    BUE For materials with high flexibility and high friction coefficient, during the cutting process, due to the pressure between the very high friction coefficient and chips, there are some particles bonded on the tool surface. When the cutting continues, the bonding The more material there is, the more it accumulates to an appropriate height, it will be lost with the chips, or part of it will be embedded in the working surface. Since this effect occurs periodically, the smoothness of the machined surface is much lower than that of the continuous chip. This phenomenon can be reduced by reducing the chip thickness and increasing the inclination angle.

Chip Formation is Applied in the ISO System:

  • ISO group P (steels) includes materials with fairly high ductility and long chipping tendency. They require proper precautions to keep chips in an acceptable shape and length.
  • ISO groups K (cast materials) and H (hard steels) include low-ductility materials that produce short chips. This simplifies chip control.
  • ISO groups M (stainless steels), S (super alloys), and N (non-ferrous materials) include materials with relatively low ductility but significant adhesion. These materials form so-called build-up chips.
Published by Jan 03, 2023

Further reading

You might also be interested in ...

Headline
Knowledge
Important Features of Bicycle Wheel Design and Construction
Bicycle wheels significantly impact the overall performance, handling, stability, speed, and comfort of the bicycle riding experience. The design, construction, anatomy, and setup are important considerations when choosing the right wheels. Well-designed wheels can enhance efficiency, responsiveness, and enjoyment while riding.
Headline
Knowledge
Smart EDM: The Integration of IoT and Automation
Electrical Discharge Machining (EDM) has long been a cornerstone of precision manufacturing, enabling the creation of intricate and complex parts with unparalleled accuracy. In recent years, the convergence of Internet of Things (IoT) technology and automation has ushered in a new era for EDM, transforming traditional machining processes into smart, connected systems. Automation plays a pivotal role in this transformation, streamlining processes and minimizing human intervention. From enhanced monitoring and diagnostics to improved efficiency, the integration of these technologies is paving the way for more efficient, productive, and predictive manufacturing.
Headline
Knowledge
Micro-EDM Marvels in Precision Engineering
Micro Electrical Discharge Machining (Micro-EDM) has emerged as a transformative precision engineering technology, unlocking new possibilities for manufacturing intricate and miniature components. Micro-EDM offers unique capabilities in advanced applications, including medical device manufacturing, aerospace components, and miniaturized electronics. Several unique solutions have been developed to address exceptional challenges associated with micro-scale machining in the electronics industry, medical implant manufacturing, and aerospace turbine blade production.
Headline
Knowledge
Cutting-Edge Innovations in EDM Technology
Electrical Discharge Machining (EDM) has undergone a remarkable evolution, transforming from a niche technology to a versatile and precise machining method. Key advancements of EDM technology have included the integration of advanced control systems, cutting-edge features, strides in tooling and electrode materials, and the applications and benefits of high-speed EDM.
Headline
Knowledge
Mastering Your Game: The Precision of Gaming Mice
The gaming mouse, once a mere peripheral, has evolved into a vital tool for gamers worldwide, enhancing gameplay through advanced technology and design. In the high-stakes world of competitive gaming, where every millisecond counts, the right equipment can mean the difference between victory and defeat. The gaming mouse is literally at the center of the action and must be designed for precision, speed, and ergonomics. Unlike their standard counterparts, gaming mice are built with advanced features that cater to the nuanced demands of video game enthusiasts. Let's take a look at what makes them unique.
Headline
Knowledge
Understanding the Logistics and Transportation Sector
As the number of e-commerce transactions continues to surge, there is a parallel increase in the demand for logistics services. Amidst the ongoing transformation and upgrade of the industry, the integration of smart technology has emerged as a pivotal factor in driving its development.
Headline
Knowledge
Understanding Mechanism Design and Its Practical Applications
Creating an effective mechanism design entails thoughtful consideration of factors such as materials, specifications, precision, manufacturing processes, and functionality. Moreover, it must be cost-effective to ensure the development of a successful mechanism design.
Headline
Knowledge
Understanding the Granulation Process
Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
Headline
Knowledge
What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
Headline
Knowledge
How Does the Electroplating Process Work for ABS Plastic?
Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
Headline
Knowledge
What Are the Fundamentals and Benefits of Choosing between Liquid and Powder Coating?
Metal fabricators aiming to venture into finishing processes should familiarize themselves with two prevalent options—liquid and powder coating—along with the prerequisites necessary for a company seeking to employ either or both.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industry demands, the laser industry and technology are shifting their focus towards meeting the requirements of 5G semiconductors and smart vehicle processes. While Taiwan's laser industry has a well-established foundation built over the years, sustaining international competitiveness necessitates a proactive advancement in independent laser technology.
Agree