What is Ultrasonic Processing Technology?
Knowledge

What is Ultrasonic Processing Technology?

Through ultrasonic-assisted processing technology, hard and brittle materials can be processed easily, reducing-edge chipping and improving surface quality.
Published: Dec 08, 2022
What is Ultrasonic Processing Technology?

What is Ultrasound?

A sound wave is a kind of longitudinal wave that can be felt by the human ear. The upper limit of human hearing frequency is 16 ~ 20 kHz, so the frequency is higher than 16 kHz, which is an ultrasonic wave. Because the frequency of ultrasonic waves can be high, the directionality of propagation is strong. During the transmission of ultrasonic waves, the acceleration of medium vibration is large. Ultrasonic waves are widely used in industry, such as ultrasonic flaw detection, ultrasonic cleaning, emulsion manufacturing, chemical reaction promotion, ultrasonic welding, metal, and plastic processing, cutting, grinding, etc. The methods of ultrasonic cutting and grinding can be roughly divided into ultrasonic machining (USM) and rotary ultrasonic machining (RUM).

How is Ultrasound Processed?

The processing principle of ultrasonic processing applied to advanced materials is based on the critical depth of cut in the ductile processing characteristics of various materials, and removes materials with micro-impacts up to 20,000 to 50,000 times per second, supplemented by scraping off materials in a rotating manner Composite processing method.

It can be widely used in occasions with special process requirements such as various hard and brittle materials, difficult-to-cut materials, high-temperature-resistant superalloys, and composite materials. When the chip thickness is less than or equal to the critical depth of cut, the cutting pattern is no different from the traditional metal material cutting. However, when the chip thickness gradually increases and exceeds the critical depth of cut for ductile processing of the material, the phenomenon of material rupture will occur immediately, resulting in the result of processing failure. However, such a small critical depth of cut is impossible to achieve in terms of the motion resolution of the current general processing equipment, and it can be achieved with the help of ultra-precision processing equipment. Therefore, ultrasonic processing technology was proposed as early as the 1950s. Mainly for processing solutions for hard and brittle materials, applied to hard and brittle materials such as alumina, zirconia, sapphire, silicon, quartz, and glass-ceramic.

Install the ultrasonic processing equipment on the traditional lathe equipment, through the ultrasonic oscillator and the tool fixing device with the amplitude amplification structure, according to the sine wave design of the ultrasonic amplitude transmission and amplification, the tool is fixed at the place with the largest ultrasonic amplitude position, for cutting hard and brittle optical glass materials. The ultrasonic processing frequency used is 39~40 kHz and the maximum amplitude is 5 µm. With rotary ultrasonic machining technology, traditional machine tools can be used to perform fine cutting patterns, replacing the technical barriers of ultra-precision machining equipment and its extremely fine motion resolution.

What is an Ultrasonic Rotary Processing Machine?

The development of ultrasonic processing is applied to the processing of hard and brittle materials, and to improve the processing efficiency of hard and brittle materials. Ultrasonic processing has been successfully applied to the processing of materials such as carbide, stainless steel, ceramics, and glass.

Ultrasonic processes can be used in conjunction with many traditional turning, drilling, and boring operations to efficiently process metal and non-metal materials. Benefits include increased material removal rates, reduced tool wear, and improved machined surfaces.

In the processed semiconductor and 3C industries, the demand for processing hard and brittle materials is increasing. Ultrasonic Given the need for ultrasonic processing, develop an ultrasonic rotary machining spindle. The tools used in its processing are processed with high-speed rotation and high-frequency vibration in the axial direction and can be applied to drilling, cutting, boring, or thread cutting. The ultrasonic rotary machining spindle can be easily installed on the CNC machine.

What is the Processing Principle of Ultrasonic Processing?

The ultrasonic rotary machining spindle uses the tool to contact the workpiece to cut, which is different from ultrasonic abrasive machining. The diamond cutter used in it rotates at a high speed to grind. In some processing occasions, the workpiece also needs to be rotated. Material removal can be facilitated under multiple motions such as axial, high-frequency vibration, and tool rotation.

  • Cutting:
    Ultrasonic rotary machining spindle is often used to process hard, brittle, and difficult-to-cut materials. Such as ceramics and pure iron materials, and can provide efficient cutting processing on aluminum alloy, glass, quartz, zirconium, ruby, sapphire, beryllium oxide, boron, etc.
  • Drilling process:
    Drilling needs to be done on hard materials, and it is difficult to drill small holes with traditional tools. Bits can deflect, making it difficult to control straightness tolerances. Ultrasonic rotary machining is often more precise than conventional drilling when drilling holes in hard materials. The coolant flows from the core of the drill bit to wash away the chips and cool the tool, and some tools are supplied with coolant from the outside. During processing, the diamond drill can vibrate axially to reduce friction, which is more efficient and faster than traditional methods, and the blockage of the tool and the core can be reduced.
The advantages of ultrasonic processing applied to the processing of hard and brittle materials:

CNC ultrasonic rotary spindle processing machine, because the tool itself is a set of ultrasonic longitudinal vibration horns, so compared with traditional CNC spindle processing machines, the advantages of applying to hard and brittle materials are as follows:

  • Reduce processing resistance.
  • Improve processing efficiency.
  • Improve the roughness of the processed surface.
  • The tool itself will never stick to debris, prolonging the service life of the tool.
  • No residual processing stress.

Application Fields of Ultrasonic Processing:

Ultrasonic processing application fields and market opportunities Ultrasonic processing technology expands in the application field. With semiconductors, optoelectronics, aerospace, medical equipment, energy, electric vehicles, 3C electronics, precision machinery, etc. Many lightweights, harder, tougher, and high-temperature-resistant advanced materials are gradually popularized and deepened in the scope of various applications, and continue to deepen, gradually becoming one of the standard process technologies in various industrial fields.

Application fields of CNC ultrasonic rotary spindle processing machine:
  • Glass processing (touch panel).
  • Processing of hard and brittle materials (such as quartz, silicon carbide, zirconia.)
  • Processing mode Drilling, square hole opening, edge trimming, chamfering, long slot milling, blind hole milling, etc.

What are the Advantages of Ultrasonic Processing?

Rotary ultrasonic processing technology has verified the particularity and superiority of ultrasonic processing in occasions requiring processes. Such as optical components, hard and brittle materials, difficult-to-cut materials, high-temperature-resistant superalloys, and composite materials.

  • Cutting force reduced by 40%.
  • Cutting efficiency increased by 300%.
  • Tool life is effectively improved.
  • Reduce the phenomenon of micro-cracks in hard and brittle materials.
  • Improve workpiece surface roughness.

Material processing has become a market for the CNC machine tool industry. In the future, the decisive point will be high-efficiency, high-quality hard, tough, and lightweight advanced material processing technology and equipment, no longer traditional precision metal cutting technology. However, there is still a long way to go for the mold and precision machinery parts industry, as well as the application and change of new materials. It is expected that ultrasonic processing technology can also improve the processing quality and efficiency of traditional metal materials, higher-grade mold steel materials, and various tool alloy sheets of steel, and even simplify the current manufacturing procedures. To achieve rapid production and reduce the dependence on manual processes.

Ultrasonic processing technology applied to mold industry analysis Ultrasonic processing technology applied to the field of mold and precision parts processing has gradually become popular. At present, in the range of common materials such as various special die sheets of steel, alloy tool steels, powdered high-speed steels, and tungsten steels, we can analyze the specific target expectations of the market for process technology improvement needs.

Common needs in the fields of various mold manufacturing industries:
  • CNC automated high-gloss and mirror processing, reducing or even replacing manual polishing and grinding processes.
  • Reduce or replace reliance on discharge processes.
  • Reduce the surface stress residue caused by various processing techniques or additionally remove the surface hardening layer.
  • Improve overall processing efficiency and reduce processing costs.
  • Improved tool life and reliability.

The current ultrasonic processing technology for the mold and precision parts processing industry has successfully verified the feasibility of three important indicators, namely, significant changes in materials, manufacturing processes, and performance. In terms of materials, ultrasonic machining technology has been proven to easily process tough special alloy tool steels, and even higher-grade ceramic materials such as SiC, SiN, or ceramic matrix composite materials.

As for the change in the manufacturing process, many small-diameter grinding rods are used for grinding instead of milling. Therefore, the grinding process can be further refined to the grinding and polishing process, replacing the long-term dependence on manual labor. Manual grinding and polishing can improve the negative impact caused by human factors and the serious problem of serious fault shortage of current practitioners. It can be combined with the current technological requirements for surface finishing and mirror surface processing of advanced metal laser volume layer manufacturing technology to bring an effective solution to surface hardening layer processing and can be applied to current molds that require maintenance and welding repairs for the final finishing process requirements.

Published by Dec 08, 2022 Source :caemolding

Further reading

You might also be interested in ...

Headline
Knowledge
Choosing the Best Forklift for Your Warehouse: A Guide for New Managers
Forklifts are essential tools for any warehouse, facilitating the efficient movement of goods and materials. Selecting the right forklift requires understanding their history, technology, and applications.
Headline
Knowledge
A Barista’s Guide to French Press Coffee Makers
The French Press coffee maker, celebrated for its simplicity and its ability to create rich, aromatic coffee, is a staple in coffee brewing. For baristas and coffee enthusiasts alike, understanding the history, design, and versatility of French Press coffee makers is key to appreciating their value and mastering their use.
Headline
Knowledge
Syphon Coffee Makers: A Harmonious Blend of Tradition and Innovation
Syphon coffee makers have long captivated coffee enthusiasts with their blend of scientific precision and artistic flair. This unique brewing device seamlessly combines functionality with aesthetic appeal, offering a refined coffee experience for homes and cafes alike. The enduring popularity of syphon coffee makers stems from their innovative technology, historical development, intricate design, and the materials and manufacturing processes involved in their creation.
Headline
Knowledge
Data Storage and Backup Systems: Ensuring Integrity and Accessibility
Data storage and backup systems play a crucial role in managing, protecting, and preserving the vast amounts of information generated by businesses, organizations, and individuals. Data storage and backup systems encompass a range of solutions, including traditional local storage options such as hard disk drives, (HDDs) solid-state drives (SSDs), tape drives, and network-attached storage (NAS), as well as online cloud storage services provided by third-party vendors. Local storage and online cloud storage each offer their own distinct advantages and considerations in terms of accessibility, scalability, security, and cost-effectiveness.
Headline
Knowledge
Networking Devices in Information Communication Technology
Networking devices such as routers, switches, and access points (APs) are crucial components of Information and Communication Technology (ICT) systems, as they provide the necessary infrastructure for devices to connect to local networks or the internet. They enable reliable, secure, and seamless connectivity, data transfer, and communication between devices, regardless of their physical location. Networking devices also include modems, network cables, and peripherals such as printers, scanners, and monitors.
Headline
Knowledge
Semiconductor Components: Foundations of Semiconductor Manufacturing
Semiconductors are crucial components in the modern electronics that have revolutionized our daily lives. However, what is often overlooked it that their manufacturing requires a complex integration of unique components such as silicon wafers, dopants, photoresist materials, equipment for lithography, and chemicals for etching. The behind-the-scenes production of semiconductor components involves a complex supply chain, and suppliers of these components play a vital role in semiconductor manufacturing. In this article we will take a look at five of these vital components.
Headline
Knowledge
Microprocessors: The Brain Behind Modern Technology
Microprocessors, often called the "brain" of computers and smart devices, have transformed modern technology and become essential in Information Communication Technology (ICT). From powering personal computers and today's smart devices, to driving advancements in artificial intelligence (AI), microprocessors are integral to the devices we rely on daily.
Headline
Knowledge
How Shaper Machines Differ from Planer Machines
Let's explore the definitions of planers and shapers. Planers and shapers are both machine tool applications frequently found in the machine tool industry.
Headline
Knowledge
Blood Glucose Meters: Technology, Types, and Manufacturing
Blood glucose meters (BGMs) have become essential tools for managing diabetes, providing real-time feedback that enables individuals to monitor and control their blood sugar levels. Blood glucose meters have evolved dramatically since their early inception, leveraging technological advancements and meeting the growing needs of diabetes patients worldwide.
Headline
Knowledge
Computer Printers: Developing Technology and Applications
As staples in modern workplaces and personal settings, printers have continuously adapted to evolving technology and consumer expectations. Building upon the concepts of rudimentary devices like typewriters, printers have advanced to the sophisticated digital innovations we see today.
Headline
Knowledge
Espresso Coffee Makers in Taiwan’s Coffee Scene
Over the past twenty years, Taiwan has developed a vibrant and deeply rooted coffee culture. As local demand for premium coffee rises, Taiwan has rapidly adopted many innovative coffee brewing methods. Although the country’s espresso machine manufacturing industry is relatively young, it holds promising potential to support and grow alongside this flourishing coffee scene.
Headline
Knowledge
Hanging Ear Drip Coffee Bags: Brewed Coffee on the Go
Hanging Ear Drip Coffee Bags are redefining how coffee lovers enjoy their favorite brew, combining convenience with premium quality. This innovative coffee brewing method offers an elegant solution for enjoying freshly brewed coffee anytime, anywhere.
Agree