Innovations in Precision Medicine - AI Surgical Robots and Physician Collaborative Surgery
Trend

Innovations in Precision Medicine - AI Surgical Robots and Physician Collaborative Surgery

With the advent of the AI era, the medical community has begun to use AI data analysis, develop surgical robots, and collaborate with doctors to create innovations in precision medicine.
Published: Mar 15, 2022
Innovations in Precision Medicine - AI Surgical Robots and Physician Collaborative Surgery

New changes in medical surgery-the development of AI surgical robots

With advances being made in medical technology, and clinical requirements becoming more stringent, surgical robots have emerged as a high-accuracy solution for minimally invasive surgeries. With their high stability, flexibility, and precision, robots will be future improved to include the development of hand-eye coordination for minimally invasive surgery.

In the past, humans may have misdiagnosed or made mistakes in surgical procedures due to fatigue or other factors. Now robots can take over. Early and mild symptoms that humans may not notice can be detected by AI to give early warning so that doctors can prescribe the right medicine in advance. AI will not replace humans but will collaborate with humans to create precision medicine. Nowadays, AI surgical robots have already been officially introduced into the operating room to help physicians create lower-risk, safe and efficient surgeries with precision and flexibility.

How can AI surgical robots help physicians improve the performance of surgery?

Surgical robots can bring advantages to operations that require precise maneuvers. For example, using a traditional head frame used for head surgeries, a surgical robot can be programmed to perform delicate surgeries. Electrodes are implanted at the target position, and instruments can be maneuvered in relationship to the electrode positions, reducing the risk of human error. Combining AI surgical robots with 3D scanning application data allows operations to be completed with high precision and low error. During automated robotic procedures, the doctor can pay more attention to the patient's condition, and more efficiently complete the operation.

Traditional surgical operations can be time-consuming, causing pressure on the surgeon to perform the surgery quickly, resulting in errors. With the assistance of robots, the operating time is shortened, thereby reducing risk during surgery. The entire medical team’s efficiency can be improved, and risks due to extended time under general anesthesia can be reduced, leading to a higher probability of successful surgery. Family members are also spared from the anxiety of a long waiting time during surgery.

Equipped with computer vision, automatic navigation, and AI analysis technologies, there are many potential development possibilities for surgical robots:

For deep brain stimulation surgery, the room for error that in traditional surgery is about 2 mm – 10 mm, but surgical robots can limit the error to within 0.5 mm, improving the accuracy of the entire surgery.

Current state-of-the-art, mechanical, minimally invasive surgical systems are composed of three parts: A surgical robotic arm, a 3D endoscope, and a console. The 3D endoscope provides ultra-high-resolution, with a 3D field of view, giving accurate determination of distances and positions of objects, allowing the robotic arm to perform accurate operations. The robotic arm can imitate human beings to perform subtle movements such as rotation and gripping. It can perform delicate surgeries in a small spaces, as well as assist in the incision and suture of the operation. Accurate operations can also reduce scars, for better cosmetic results.

With robot-assisted surgery, the medical team's grasp of the situation during the entire surgical procedure will be relatively improved. Through automated operation using surgical robots, the lengthy surgery time typical in the past has been shortened substantially, reducing the burden on patients during the operation. With further integration of technologies, surgical robots will be able to use computer vision, automatic navigation, artificial intelligence and data analysis to complete more precise surgical operations, further reducing human errors.

Prospects for the development of surgical robots:

Work presently being performed by surgical robots is based on medical technology developed over the past few decades. With the improvements in precision and stability of surgical robots, doctors have been freed to focus more on the overall operation to obtain better medical diagnosis and medical quality.

The application of surgical robots has brought innovation to traditional surgery, and the scope of application has become more and more extensive. However, the high cost of surgical robots, national health insurance policies, and the high cost of consumables have limited their market development. But then the minimally invasive nature and quick postoperative recovery times resulting from the use of surgical robots can allow patients to be discharged early, reducing costs and the risk of postoperative recurrence. With the further development of medical technology, surgical robots will surely bring more convenience to the medical industry.


Published by Mar 15, 2022 Source :technews

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree