How Can AI Improve Automatic Optical Inspection?
Knowledge

How Can AI Improve Automatic Optical Inspection?

Further improvement based on AI is the future development direction of Automatic Optical Inspection (AOI), and training algorithms for optical inspection applications can bring higher decision-making capabilities. AOI technology is currently widely used in industry, agriculture, biomedical and other industries, especially in precision manufacturing and assembly industries.
Published: Mar 03, 2022
How Can AI Improve Automatic Optical Inspection?

Inspection Methods in Industry - Automated Optical Inspection

In manufacturing, inspection is an essential function. Visual inspection guarantees that the product functions and looks as expected, and provides important benefits to manufacturers and customers. Quality assurance is provided by automated optical inspections, which can be communicated directly to customers through product labeling, or recorded within a manufacturing facility as part of their quality control process.

In addition, identifying any non-conforming items in the production process helps to determine whether the production process or steps need to be adjusted. The inspection results can help determine the cause of the failure, and the immediate identification of the defect can immediately stop the production and solve the problem. The sooner quality problems are identified, the lower the cost of solving them.

What is Automatic Optical Inspection (AOI) technology?

In the process of product manufacturing, due to various reasons, parts and components will inevitably have a variety of defects. These defects not only affect the performance of the product but even endanger life safety of the user in severe cases, causing huge losses to users.

With the rapid development of electronic technology, image sensing technology, computer technology, the use of automatic optical (vision) detection technology for surface defects based on optical image sensing, has gradually become the main method of surface defect detection, replacing manual visual detection of surface defects. Advantages of this method include automation, non-contact, high speed, high precision, and high stability. Automated optical inspection (AOI) technology is also known as machine vision inspection (MVI) technology or automated visual inspection (AVI) technology.

MVI is an emerging technology that integrates image sensing technology, data processing technology, and motion control technology to perform tasks such as measurement, detection, identification, and guidance in the process of industrial production. MVI uses optical imaging to simulate the visual imaging of the human eye. It uses a computer processing system instead of the human brain to perform data processing, and finally feeds back the results to the actuator to complete various prescribed tasks imitating the movements made by human hands.

From manual inspection to automated optical inspection (AOI):

Inspection is usually required for each product produced, and operators can be trained manually to inspect the processing or overall appearance of simple products. But as products become more sophisticated, some applications, such as printed circuit board components (PCBAs), may require scaled-up equipment whose minimum functional size is a challenge to inspectors' visual acuity. With the increase in product complexity, various types of equipment contain a large number of components. When inspecting and recording results, inspectors must overcome the dual challenges of vision and time requirements, which may lead to inaccurate manual inspections.

With increasing challenges in feature size, complexity, and throughput, automated optical inspection (AOI) is a practical way to ensure adequate inspection of every item. AOI includes image sensing, lighting, and computing subsystems that work together to capture and analyze images. The AOI system can compare the captured image to a reference image and then identify defects such as material surface defects, solder defects, or missing or misplaced components on the PCBA. Alternatively, some rule-based system measures feature dimensions to determine good or bad status. If a defect is detected, the machine equipment can isolate the defective item before continuing with subsequent inspections, or pause and warn the operator.

AOI can detect shortcomings of assembled circuit boards such as missing or skewed features, tombstone defects, wrong components, wrong polarity, defective soldering, solder bridges, and insufficient solder.

From traditional image processing to the application of AI technology:

The basic principle of image recognition is to digitize each captured image and apply various filters to detect patterns and features of objects. Edge detection filters are often used to detect objects in images, and algorithms that can identify people can apply slope detection to identify features such as arms, shoulders, legs, etc. It is also necessary to detect the orientation of these detected features relative to each other as a further defining criterion. The detection solder joint algorithm can use edge detection and color detection to identify solder joints and detect whether the fillet slope is within an acceptable range. The optical system can illuminate the unit under test from different angles using different colors.

Traditional image recognition faces many challenges, whether it is for people identification in applications such as security surveillance or vehicle-pedestrian detection, face recognition in social media, or defect detection in industrial inspection.

Defining rules and creating algorithms to detect and classify objects in digitized images is complex. In industrial inspection, developing reliable algorithms is expensive and time-consuming. When inspecting PCB components, solder joint quality is only one criterion to be tested. The presence of each component must also be verified, as well as its position and orientation relative to the solder mask, component coplanarity, and the presence of unwanted objects. Fine-tuning algorithms and adding more algorithms to cover more conditions is a never-ending task that requires constant software updates. Whenever a new product is used in the industry, new algorithms must be developed to detect it.

Artificial intelligence (AI) can imitate humans to a certain extent, applying the lessons learned to image recognition, and then being able to respond to the challenges posed by infinite changes. Among the various computing architectures covered under the general concept of AI, Convolutional Neural Networks (CNN) are commonly used for image recognition. These include artificial neurons connected and arranged in layers. They are usually deep neural networks that contain multiple inner or hidden layers between the input and output layers. The hidden layer performs specific, well-defined sampling pooling and convolution operations on the data received from the previous layer. The result is sent to the next layer, and finally to the output layer, which can indicate whether the sought object has been recognized. Before deploying a CNN, it needs to be trained to recognize specific objects. In this process, the importance or weight of each neuron is adjusted by whether each answer is correct or not. After many repeated operations, CNN can identify images with high accuracy.

The combination of AI technology and AOI equipment:

AI can bring advantages to AOI equipment suppliers and users. From a supplier perspective, if AI can determine the probability of finding a particular object, it can simplify algorithm development. Helps reduce time-to-market for new devices and reduce ongoing software support costs by reducing the need to define each item and corresponding acceptance criteria. For users, implementing enhanced AOI through AI can simplify inspection system settings, programs, and fine-tune quality judgment values.

The combination of AI technology and AOI equipment has higher accuracy and fewer false positives than traditional systems and can be quickly trained to detect new products or identify previously unknown defects. AI can automatically adjust multiple parameters faster than human experts and make decisions with a significantly reduced risk of error, enabling consistent detection results regardless of whether the AOI system is programmed by a beginner or an expert.

AOI system architecture:

The AOI system is composed of a simple optical imaging and processing system integrated with general-purpose devices such as cameras, lenses, light sources, and computers. Such system characteristics underscore the advantages AI can bring to inspection applications in many areas, including security and retail. In applications where images need to be searched to detect objects and features or identify individuals, AI can simplify setup and programming, eliminate human error, minimize latency and enable better decision-making. To help developers get the most out of this technology, camera modules are now on the market with software support to simplify AI development.

AOI's future outlook:

AOI - which can operate at line matching rates, is already supporting manufacturers in various industries to improve quality assurance and productivity and to continuously improve production processes. Further improvement based on AI is the future development direction of AOI. Training algorithms for optical inspection applications can bring additional benefits such as higher decision-making capabilities, reducing operator involvement, simplifying procedures, and providing more powerful performance, which can improve defect detection while reducing false positives.

Published by Mar 03, 2022 Source :edntaiwan

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree