What are Stainless Steel and its Classification?
Knowledge

What are Stainless Steel and its Classification?

Stainless Steel is the abbreviation of stainless acid-resistant steel, and the steel grades that are resistant to air, steam, water, and other weak corrosive media or have stainless properties are called stainless steel. The steel that is resistant to chemical corrosion is called acid-resistant steel.
Published: Dec 12, 2022
What are Stainless Steel and its Classification?

What is Stainless Steel?

Stainless steel is also called stainless acid-resistant steel, water copper iron. Metallurgy refers to the alloy steel containing high chromium that is passive, corrosion-resistant, rust-free, and in the atmosphere and corrosive media such as acid, alkali, and salt. It contains nickel, molybdenum, vanadium, manganese, tungsten, and other elements. The most important metal element that determines the rust resistance of stainless steel is chromium. Internationally defined by weight, stainless steel is an alloy steel with a minimum chromium content of 10.5% wt. and a maximum carbon content of 1.2% wt. or an iron alloy with a chromium content exceeding 10%. Stainless steel gets its name from the fact that it does not corrode and rust as easily as ordinary steel.

If stainless steel contains a low proportion of chromium or other elements, it can only form an oxide film on the surface to protect it and still oxidize. It has the anti-corrosion characteristics of copper or aluminum. This kind of steel is not stainless steel, but weather-resistant steel. Chromium and low carbon content can show obvious corrosion resistance and heat resistance, and nickel, molybdenum, vanadium, titanium, niobium, manganese, tungsten, aluminum, copper, nitrogen, sulfur, phosphorus, and selenium can be added to make An anti-rust oxide film will be formed on the surface to improve the corrosion resistance and oxidation resistance of special environments, and to endow special properties to protect the steel itself from oxidation and corrosion of air, water, certain acids and alkalis in the external environment.

Most stainless steels are first melted in a bottom-blown oxygen converter or basic oxygen steelmaking and then refined in another steelmaking furnace, mainly to reduce the carbon content. In argon oxygen decarburization, a gas mixture of oxygen and argon is sprayed into molten steel. Varying the ratio of oxygen and argon reduces the carbon content to a controlled level by oxidizing the carbon-to-carbon monoxide without oxidation and loss of expensive chromium. Therefore, less expensive raw materials such as high-carbon ferrochrome can be used in the initial melting operation.

What are the Classifications of Stainless Steel?

Ordinary steel is carbon steel, that is, iron-carbon alloy. According to the level of carbon content, it is divided into low-carbon steel, medium-carbon steel, and cast iron. Those with a carbon content of less than 0.2% are low-carbon steel, also known as wrought iron or pure iron. The content of 0.2-1.7% is steel. The content above 1.7% is pig iron.

The chromium content in steel is more than 12.5%, which has high resistance to external media such as acid and alkali salt. Corrosion-resistant steel is stainless steel, and stainless steel can be divided into martensitic, ferritic, austenitic, ferritic-austenitic, and precipitation-hardening stainless steel.

  • Austenitic stainless steel: Due to the addition of high chromium and nickel to the steel, the internal structure of the steel presents a state of austenite. This tissue is non-magnetic and cannot be attracted by magnets. It is often used as decorative materials such as stainless-steel pipes, towel racks, tableware, stoves, etc.
  • Martensitic stainless steel: Martensitic stainless steel should be used for making knives and scissors. Because knives and scissors have the function of cutting objects, they must have sharpness, and to have sharpness, they must have a certain hardness. This kind of stainless steel must undergo heat treatment to make its internal structure change and increase its hardness before it can be used as knives and scissors. However, the internal structure of this type of stainless steel is tempered martensite, which has magnetic properties and can be attracted by magnets.

Common Stainless-Steel Grades and Their Functions:

  • 200 Series Stainless Steel: Industrial Grade
    It was developed during the World War II due to an insufficient supply of nickel metal. The nickel content was halved and replaced by cheaper manganese, which was used as a substitute steel for the 300 series. It has basic hardness and corrosion resistance is relatively cheap and is relatively easy to corrode. It belongs to industrial grade stainless steel, suitable for iron windows, iron doors, beams, columns, etc.
    • Model 201: The cost is relatively low, the nickel content is extremely low, the anti-rust effect is poor, and the manganese content is high to increase the ductility. It is often used in industrial-grade stainless steel for industrial use, such as iron windows, iron doors, beams and columns, railway vehicles, etc.
    • Model 202: It has basic acid and alkali resistance. Because of its low price, it is often used as a substitute for 304 stainless steels. It is easy to precipitate manganese after heating, so it is not suitable for tableware.
  • 300 Series Stainless Steel: Food Grade
    With a high content of chromium and nickel, it achieves the best balance in hardness, corrosion resistance, and processing, and is durable. It is the first choice and the most widely used tableware.
    • Model 301: Good ductility, used for molding products. It can be hardened by mechanical processing. Good weldability. Wear resistance and fatigue strength are better than 304 stainless steel, products such as springs, steel structures, and wheel covers.
    • Model 302: The corrosion resistance is the same as that of 304, and the strength is better due to the relatively high carbon content.
    • Model 303: It is easier to cut than 304 by adding a small amount of sulfur and phosphorus.
    • Model 304: 304 stainless steel is food-grade stainless steel, which may have weak magnetism due to processing, but it cannot be strong magnetism. Suitable for tableware, corrosion-resistant containers, furniture, railings, medical equipment, etc.
    • Model 305/384: Contains higher nickel, and its work hardening rate is low, suitable for high cold formability requirements.
    • Model 309: Better temperature resistance than 304.
    • Model 316: 316 stainless steel contains molybdenum (Mo), so it is more corrosion-resistant, stronger, and more expensive. It is completely non-magnetic and belongs of medical grade stainless steel. It is suitable for surgical equipment, fertilizer production equipment, the food industry, coastal facilities, high-priced pots, etc.
    • Model 321: Because the addition of titanium reduces the risk of material weld corrosion, other properties are similar to 304, suitable for welding brewing equipment, steam pipes, and aviation parts.
    • Model 347: Added stabilizing element niobium, suitable for welding aircraft parts and chemical equipment.
  • 400 Series Stainless Steel: Food Grade
    It is a pure iron-chromium alloy, nickel-free or low-nickel stainless steel. Compared with the 300 series, it is easy to rust and the price is lower, but the advantage is that it is easy to process and has better nitric acid corrosion resistance. It is magnetic, so it can be used to distinguish 304, and 316 stainless steel.
    • Model 408: Good heat resistance, weak corrosion resistance.
    • Model 409: The cheapest model, suitable for welding, usually used for automobile exhaust pipes, and petroleum equipment.
    • Model 410: Good wear resistance, poor corrosion resistance, suitable for pumps. The raw material is cheap, magnetic, and hard enable by heat treatment. General uses include bearings, medical appliances, knives, etc.
    • Model 416: Sulfur is added, thus improving the processing properties of the material.
    • Model 420: Contains higher carbon, hardness, and higher strength. The earliest stainless steel can be made bright. It is suitable for knives, springs, surgical instruments, razor heads, and valves.
    • Model 430: 430 stainless steel is the most widely used in automotive trims and related components because of its good nitric acid corrosion resistance, and is commonly used in kitchen utensils, dishwashers, and the inner layer of washing machines.
    • Model 434: Contains molybdenum, so its corrosion resistance is better than 430, suitable for tableware, wiper, and car decoration.
    • Model 440: High-strength knife steel with slightly higher carbon content and a hardness of 58HRC, which is the hardest stainless steel.
Published by Dec 12, 2022 Source :e-jasmine

Further reading

You might also be interested in ...

Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Agree