What are the components and advantages and disadvantages of pneumatic tools?

What are the components and advantages and disadvantages of pneumatic tools?

A pneumatic tool is a device that uses compressed air from an air compressor as the power source for the tool. Pneumatic tools are very sturdy and because they do not use electricity, can be used in areas where the tool may be exposed to inflammable, explosive, dusty, or humid, harsh environments. Owing to their high stability, long working life, and easy maintenance, they are widely used in industrial fields.
Published: Feb 22, 2022
What are the components and advantages and disadvantages of pneumatic tools?

What is a pneumatic tool?

A pneumatic tool is a device that uses compressed air from an air compressor as the power source for the tool. Pneumatic tools are very sturdy and because they do not use electricity, can be used in areas where the tool may be exposed to inflammable, explosive, dusty, or humid, harsh environments. Owing to their high stability, long working life, and easy maintenance, they are widely used in industrial fields.

According to their basic operating mode, pneumatic tools are mainly divided into:

  • Rotary type (movable vane type)
  • Rotary type (movable vane type)

What are the components of a pneumatic tool?

  1. Power output:
    The power output component is one of the main parts of the pneumatic tool. It is composed of a pneumatic motor and power output gears. High-pressure compressed air blows the motor blades to make the motor rotor rotate. Output rotary motion is transformed through gears to drive the tool’s operation movements.
    Various types of motors are used to power pneumatic tools, including concentric motors and eccentric motors which use various vane functions in different arrangements. The number of air inlets can also vary so that you can have single air inlet motors, double air inlet motors, or multi-air inlet motors.
    No matter what form of air motor, compressed air blows the motor blades to drive the rotor to rotate. The motor blades are the most vulnerable part in the motor. When the motor blades rotate at high speed, friction is created on the inner wall of the stator, so the quality of the compressed air used and the content of lubricating oil particles in the compressed air have high requirement standards.
  2. Energy transformation from air pressure to motion:
    Air pressure is usually converted to rotary motions, only rarely is it converted to linear reciprocating motions. Conversion of rotary motion to the desired mechanical operation is accomplished through mechanical clutch and planetary gear sets. Rotary motion can be regulated to meet important parameters such as the torque, speed, and tightening accuracy of pneumatic tightening tools. 
  3. Intake and exhaust part:
    The intake and exhaust ports are the channels where compressed air enters and exits the tool.
  4. Movement starts and stops control part:
    Because pneumatic tools are held in the hands for extended periods of time, they are prone to damage, so the engineering of the plastic control mechanisms is important. 
  5. Energy supply part:
    The air compressor compresses air from the atmosphere, and this compressed air is transported through an air pipeline to the tool. 
  6. Air filtration and air pressure adjustment part:
    Because compressed air is usually transported through steel pipes, during long-term use, moisture in the compressed air will form rust, and dirt will accumulate on the inner wall of the pipes. If compressed air enters the tool without any treatment, it can lead to insufficient and unstable power output, or cause serious damage to the tool motor, shortening the life of the motor. Air filtration and adjustment devices must be installed somewhere in the pipeline between the air compressor and the pneumatic tools.A common accessory used along with a pneumatic tool is a 3-in-one pneumatic triplet. It incorporates the air filters, pressure reducing valves, and oil misters into one unit to prepare the air before it enters the tool. It generally filters down to 50-75μm, with a pressure regulation range of 0.5-10Mpa. The triplet needs to be maintained, cleaned, and replaced regularly.
  7. Tool accessories:
    Tool accessories refer to the tools installed on the pneumatic tool body that is in direct contact with the workpiece, and the pneumatic triplet undertakes this task. The pneumatic triplet is mainly composed of a barometer, a filter, a lubricator, a pressure regulator, etc. The filter has a built-in filter element, which needs to be maintained, cleaned, and replaced regularly after a period of use. If the compressed air directly enters the air motor without any treatment, the life of the motor will be shortened, resulting in insufficient and unstable power output of the entire tool, which is likely to cause serial damage to the motor and other components.
    Between the compressed air and the pneumatic tools, compressed air filtering and adjustment devices must be installed, including various types of pneumatic sleeves, connecting rods, adapters, cutter heads, etc.

Pneumatic tools features:

Other tool accessories include tool heads installed on the pneumatic tool body that are in direct contact with the workpiece.  They are usually highly durable tools that can withstand harsh environments with high humidity, dust, and heat, and have a wide application range. 

Application fields of pneumatic tools:

The industry applications of pneumatic tools is broad, including automobile manufacturing and repair, shipbuilding and ship repair, furniture production, construction, decoration, equipment maintenance, metal processing, aerospace, mechanical assembly, electronic assembly, home appliance assembly, casting, mold manufacturing, and other industries.

Advantages of pneumatic tools:

  • Compared with electric tools, the price of pneumatic tools is generally cheaper, the purchase and maintenance costs are lower, and the construction and maintenance of compressed air systems is relatively simple and cheap.
  • Pneumatic tools offer quick action control and quick response times.
  • The air viscosity is small and the flow resistance is small, which is convenient for the centralized supply and long-distance transportation of the medium.
  • The structure of the pneumatic tool is simple and easy to construct. The technology is mature, the service life is long, pneumatic tools are very reliable, and they have consistent industry standardization and serialization.
  • The air to be compressed can be drawn from almost any environment and can be directly discharged back into the atmosphere after use without causing environmental pollution.

Disadvantages of pneumatic tools:

  • If there is a change in the external load, due to the tools sensitivity to air pressure, the tool can respond with a severe change in action and speed. Stability of position and control of speed is poor.
  • Some systems operate under low pressure (generally less than 0.8MPa) with a low total output force.
  • The working medium (air) does not contain lubrication, so measures must be taken to lubricate the system.
  • The noise level is high so you generally need to install a muffler.

Pneumatic tool maintenance precautions:

  • Pneumatic tools should be maintained and tested by specially trained personnel. In case of abnormal operation or abnormal conditions, discontinue using and send the tool for inspection and repair.
  • Ensure that the air supply to the tool is dry and free of impurities.
  • Regular cleaning and maintenance, and timely replacement of worn parts is important.
  • To reduce wear and prolong the service life of the tool, before and after each use, the pneumatic tool air inlet should be filled with the proper oil for the tool.
  • To prolong the service life of the pneumatic tool, the three-point pneumatic triplet should be serviced regularly.  The pressure should be checked to be sure it is set properly, filters should be changed, and the lubricating oil system (oil mist) should be refilled.
  • It is recommended to disassemble the pneumatic tool every 3 to 6 months, and carry out a major overhaul and comprehensive cleaning.
  • Use appropriate tools when disassembling and assembling a pneumatic tool.
  • Use the manufacturer's original parts when replacing parts, to avoid the decline of performance and increase of maintenance costs.
  • When the pneumatic tool needs to be repaired or maintained, be sure to disconnect the air tool from the air source, or close the air tube.
  • Before use, check to ensure that the assembly is correct, and all screws and fasteners are installed and tightened properly.
  • After each maintenance or repair, check the idle speed of the air tool before installing fittings and accessories on the shaft.
  • Store the pneumatic tools in a clean place after use, so that they can be used at any time in the future.
Published by Feb 22, 2022 Source :read01, Source :read01

Further reading

You might also be interested in ...

What is an Oscilloscope?
An oscilloscope is a diagnostic instrument that graphs electrical signals. Whether it is a simple or complex product, it includes electronic components, and its design, verification, and the debugging process require an oscilloscope to analyze the many electrical signals that make the product wake up.
What is Heat-assisted Magnetic Technology?
Heat-Assisted Magnetic Recording (HAMR) is a technology that uses laser heat to first heat highly stable media to assist in the magnetic recording of data.
Key Components of Automotive Semiconductors: ECU, MCU and Sensor
The automotive semiconductor market continues to be optimistic. At present, the main automotive semiconductor chips include microcontrollers (MCU), power management ICs, digital signal controllers (DSP), sensors, power semiconductors, discrete components, micro-electromechanical (MEMS), memory, customized application IC (ASIC), etc. The automotive chip supply chain is complex and long. After the shortage storm in 2021, automakers began to shorten the semiconductor supply chain, hoping to shorten the long chain. Some automakers even have the idea of developing and designing automotive semiconductors by themselves.
What is Sheet Metal Processing?
"Sheet metal" in sheet metal processing refers to thin metal plates, which can be processed by stretching, stamping, bending, etc., and the thickness is usually less than 6mm. Common materials include iron plates (black steel SPHC, cold-rolled steel SPCC, galvanized steel SECC), hot-dip galvanized steel sheet SGCC), stainless steel (SUS304, SUS316), aluminum (AL5052), copper, etc. Sheet metal processing is different from other processing technologies. It includes many different steps, such as: laser cutting, NCT punching, cutting, folding, welding, riveting, etc. The specific products produced are usually support frames, equipment covers, internal parts and some functional objects, such as electronic control panels, medical equipment covers, airport automatic clearance machine covers or parts, snapshot cabinets, food processing equipment covers and parts.
What is an Industrial Cooler?
A cooler is a device used for cooling during the manufacturing process.
How to Choose a Suitable Uninterruptible Power Supply System?
Uninterruptible Power Supply (UPS) is a device that continuously provides backup AC power for electrical load devices and maintains the normal operation of electrical appliances when the power grid is abnormal. Uninterruptible power supply systems can be divided into online, offline, and line interactive. The power requirements of each field are different. How to choose a suitable one?
What is Anodizing?
Anodizing is a treatment used to enhance the surface properties of metals. It can improve the appearance, durability, conductivity or other properties of a metal surface and help protect it from wear and corrosion. In addition, it can also be used to make different shaped materials, such as rubber rings, pressure-type parts or trimming cutting tools. Therefore, anodizing is a common metalworking method.
What is A Punch? Punch Principle, Type, Material Introduction
Punching machine, also known as stamping machine, is a forming process technology. There are many types of it. Due to different structural principles, the price and processing effect will be different accordingly, but they all have something in common in terms of structural composition. With the rapid development of the stamping industry, competition in all walks of life is increasing, and it is applied to various industries, such as aerospace, education, auto parts, diving equipment and so on. The following will introduce the punch structure, type and material.
Introduction to the Different Types of Welding
Welding is a manufacturing process and technology that uses heat, high temperature or high pressure to join metal or other thermoplastic materials such as plastics. According to the state of the metal in the welding process and the characteristics of the process, the welding methods can be divided into three categories: welding, pressure welding and braze welding.
What is Worm Gear?
A worm gear is a gear consisting of a shaft with a helical thread that meshes with and drives the gear.
What is Chip Formation?
In the chip formation process, materials are cut through mechanical means by using tools like milling cutters, saws, and lathes. It is an integral part of the engineering of developing machines and cutting tools.
What Exactly is a Boring Machine?
A boring machine, device for producing smooth and accurate holes in a workpiece by enlarging existing holes with a bore. A single-point tool is attached to a rotating spindle within a boring head. They can dig through anything from hard rock, soft soil to sand.