What is a Permanent Magnet?
Knowledge

What is a Permanent Magnet?

Permanent magnets, also known as lodestones, can be made from natural products or artificially made. A material that can take on magnetism, retain the magnetism once magnetized, and withstand an external magnetic field without becoming demagnetized, can make a permanent magnet.
Published: May 19, 2022
What is a Permanent Magnet?

What is a Permanent Magnet?

A permanent magnet refers to a magnet that can retain its magnetic properties for a long time. An example of a natural material that can form a permanent magnet is magnetite. Artificial materials such as AlNiCo alloy can also be used to form permanent magnets. Unlike electromagnets, permanent magnets do not need to be energized by an external magnetic field to be magnetic. Permanent magnets retain residual magnetization after the external magnetic field is removed.

The magnitude of the reverse magnetic field required to completely demagnetize a ferromagnetic substance is called the coercive force of the ferromagnetic substance. Both steel and iron are ferromagnetic, but their coercivity is different. Steel has a larger coercivity, while iron has a smaller coercivity. The addition of carbon, tungsten, chromium, and other elements causes the steel to have varying magnetic properties at room temperatures. The crystal structure, internal stress, and magnetic strength may vary. These variations are called inhomogeneities, and can be selected to increases the materials magnetic force. Generally, the greater the degree of inhomogeneities, the greater the magnetic strength.

To achieve the best state of inhomogeneity of the steel, proper heat treatment or machining must be carried out. For example, when carbon steel is in the molten state, its magnetic properties are like that of ordinary iron. However, after it is quenched at high temperature, the unevenness increases rapidly, and the material acquires the potential to become a stronger permanent magnet. If the steel is slowly cooled from a high temperature, or the quenched steel is melted at six or seven hundred degrees Celsius, the internal atoms have sufficient time to arrange into a stable structure, and various inhomogeneities are reduced. So, coercive force is then reduced, and it is no longer a permanent magnet material.

Steel or other materials can be made into strong permanent magnets if they are properly treated and processed to have the best internal inhomogeneity and maximum coercivity. The crystal structure of iron, its internal stress and other inhomogeneities are small, and the coercive force is naturally small, so it does not require a strong magnetic field to magnetize or demagnetize it, so it cannot become a permanent magnet. Generally, materials that are easy to magnetize and demagnetize are called soft magnetic materials. Most of the materials used as magnetic conductors and electromagnets are soft magnets. The polarity of permanent magnets does not change, whereas the polarity of soft magnets changes with the polarity of the applied magnetic field.

What is a Temporary Magnet?

Temporary magnets are special types of magnets that can change their magnetic properties with changes in external conditions. This means that the magnetic properties of the temporary magnet will not remain the same regardless of external conditions. Another name for temporary magnets is soft magnets or electromagnets.

The magnetic domains of temporary magnets are not permanently aligned with external magnetic fields, and they easily return to their original state. The magnetization and demagnetization of magnetic materials requires an external magnetic field. Electrical energy can create the electromagnetic domains necessary for the magnetization of soft magnet material. The poles of an electromagnet can easily be reversed or changed. When the applied magnetic field disappears, the electromagnetic behavior disappears immediately.

Soft magnets are usually made of a mixture of soft and malleable materials such as soft iron, giving the magnets special and unique properties. Temporary magnets have short-range magnetic fields. Soft iron plays a central role in transformers and is used in powerful magnetic tools, such as in MRIs along with permanent magnets.

What is the Difference Between Permanent Magnets and Temporary Magnets?

  • A permanent magnet is a type of magnet that does not require an external magnetic field to remain fully magnetized, while a temporary magnet is a type of magnet that requires an external magnetic field to remain fully magnetized.
  • The properties of a permanent magnet do not change, whereas a temporary magnet is a magnet whose magnetic properties are constantly changing. Permanent magnets are made of hard materials, while temporary magnets are made of soft materials.
  • The magnetic poles of permanent magnets can never be reversed, while the magnetic properties of temporary magnets can be reversed.
  • The magnetic field strength of a permanent magnet is constant, while the strength of a temporary magnet always changes with conditions.
  • Permanent magnets don't need electricity to work like magnets, while temporary magnets always need electricity to work like magnets.
  • Permanent magnets are called bar magnets, while temporary magnets are also called electromagnets.
  • The magnetic field in the permanent magnet does not disappear with the disappearance of the external magnetic field, while the magnetic field in the temporary magnet disappears when the external magnetic field disappears.
  • The magnetic domains of permanent magnets, once aligned, can never be easily reversed, while the magnetic domains of temporary magnets, once aligned, are easily reversed.
  • In physics, permanent magnets are the type of magnets that are made of a hard permanent ferromagnetic material, while temporary magnets are the type of magnets that are made of some ferromagnetic temporary material.

Permanent Magnet Application:

Permanent magnets are widely used in various fields such as electronics, electrical, mechanical, transportation, medical and daily necessities. Permanent magnets can be found in speakers, telephone receivers, magnetic systems of magnetoelectric meters, generators, and magnetic poles in permanent magnet motors. Permanent magnet devices are used in machine manufacturing, magnetic suspension systems, magnetic bearings, magnetic separation systems, magnetic mineral separation, magnetic water purification systems, magnetic systems of proton accelerators, etc.

Permanent Magnet Material:

Strong permanent magnets can be formed by rare earth elements cerium, strontium, lanthanum, neodymium, etc., and cobalt. Their magnetic strength can reach 150 times that of carbon steel, 3 to 5 times that of AlNiCo permanent magnet materials, and 8 to 10 times that of permanent ferrite. Specialized magnets, like Rubber Magnets, can be made using bonded ferrite powder and synthetic rubber, extruded into molds, and processed into soft, elastic, twistable magnets.

What Are the Commonly Used Permanent Magnet Materials?

  1. AlNiCo permanent magnet alloy:
    AlNiCo is mainly composed of iron, nickel, and aluminum, but also contains copper, cobalt, titanium, and other elements. It has high remanence, a low-temperature coefficient, and high magnetic stability. It is available as either a casting alloy or a powder sintering alloy. It is often used in the manufacturing of magnetoelectric instruments, flow meters, micro motors, relays, etc.
  2. Iron-chromium-cobalt permanent magnet alloy:
    This alloy is mainly composed of iron, chromium, and cobalt, with small amounts of molybdenum, titanium and silicon added. Its processing performance is good, its magnetic properties are like that of AlNiCo permanent magnet alloys, and its magnetic properties can be improved by plastic deformation and heat treatment. It is used to manufacture various small magnet components with small cross-sections and complex shapes.
  3. Permanent magnet ferrite:
    These are mainly barium ferrite and strontium ferrite alloys, which have high resistivity, large coercivity, and can be effectively applied in magnetic circuits with large air gaps such as for the permanent magnets of small generators and motors. Permanent magnet ferrite does not contain precious metals like nickel, cobalt, etc., There are rich sources of raw material available, and their processing is simple and low cost. They can be used to replace AlNiCo permanent magnets in the manufacturing of magnetic separators, magnetic thrust bearings, speakers, microwave devices, etc. However, its maximum magnetic energy product is low, its temperature stability is poor, its texture is brittle and fragile, and it is not resistant to shock and vibration, so it is not suitable for measuring instruments and magnet devices with precise requirements.
  4. Rare earth permanent magnet materials:
    These are mainly rare earth cobalt permanent magnet materials and NdFeB permanent magnet materials. The former is an intermetallic compound formed by rare earth elements cerium, strontium, lanthanum, neodymium, etc., and cobalt. It is mainly used for magnetic systems of low-speed torque motors, starter motors, sensors, magnetic thrust bearings, etc. NdFeB permanent magnet material is the third generation of rare earth permanent magnet material. Its remanence, coercive force and maximum magnetic energy product are higher than the other permanent magnet materials. It is not fragile, it has good mechanical properties, and low density, so is preferable for use in lightweight magnetic components. It is good for items requiring miniaturization, but its high magnetic temperature coefficient limits its application.
  5. Composite permanent magnet material:
    These are composed of permanent magnetic material powder incorporated into a plastic material as a binder. Since a portion of the material is the binder, its magnetic properties are significantly lower than the corresponding magnetic material without binder. Composite permanent magnet material applications are limited by the heat resistance of the binder. Their operating temperature is low, generally not exceeding 150 ℃. However, composite permanent magnet material has high dimensional accuracy, good mechanical properties, good performance uniformity, and it is easy to perform radial orientation of the magnet due to multi-pole magnetization. It is mainly used in the manufacturing of electrical instruments, communication equipment, rotating machinery, magnetic therapy equipment, and sporting goods.
Published by May 19, 2022 Source :easyatm, Source :tl80

Further reading

You might also be interested in ...

Headline
Knowledge
Silicon Wafer Cutting Machines: The Core Engine of Solar Panel Manufacturing
In the solar panel manufacturing industry, the silicon wafer cutting machine (Wire Saw) forms the foundation of the entire production process and stands as the key equipment determining both product yield and cost. From slicing monocrystalline or polycrystalline silicon ingots to shaping the wafers used in photovoltaic modules, the quality of each wafer directly impacts the efficiency and durability of solar panels.
Headline
Knowledge
Driving the Future of Manufacturing with High-Performance Materials: Advanced Composites and Aluminum Alloys
In modern manufacturing, materials science has become a critical factor in industrial competitiveness. The widespread adoption of advanced composites and aluminum alloys has not only transformed the design of high-performance sport engines but also propelled technological advancements in the automotive, aerospace, and high-performance industrial equipment sectors. These two material categories, due to their unique properties, demonstrate significant trends and value across diverse manufacturing applications.
Headline
Knowledge
How to Choose a CNC Machine Tool: A Practical Guide on Workpiece Size, Axis Configuration, and Precision
Choosing the right CNC machine tool is essential for efficient and precise manufacturing. Instead of focusing on price or brand alone, consider your machining needs, including workpiece size, complexity, material, and automation requirements. This guide helps you select the ideal CNC machine for your production goals.
Headline
Knowledge
The Hidden Power Behind Stable Robot Operation: Structural Components
Imagine walking into your kitchen in the morning and seeing the robotic arm of an automatic coffee machine steadily grasping your cup, or observing a robot arm in a warehouse rapidly and precisely moving boxes. Behind these smooth movements, it is not just motors or programming at work; structural components quietly provide critical support. Frames, brackets, and housings do more than maintain the skeleton—they carry high-precision gears and bearings, distribute motion loads, protect internal systems, and ultimately allow the robot to move as naturally and steadily as a human hand.
Headline
Knowledge
The Hidden Secret Behind a Robot’s Smooth Rotation: The Precision Craft of Gears and Bearings
In industrial automation and smart manufacturing, the ability of robotic arms to rotate as fluidly as a human wrist is not the result of a single component, but rather the synergy of two critical “invisible parts”: gears and bearings. Together, they form the core of robotic joints, ensuring every motion is both precise and smooth. These components, however, are not simply shaped from raw steel; they are the outcome of multiple sophisticated processes—CNC machining, heat treatment, and precision grinding—to meet the highest standards of accuracy and durability.
Headline
Knowledge
The Secret Behind Fuel Efficiency: How CNC Machines Maximize Every Drop of Fuel
When we lightly press the accelerator and enjoy a smooth drive, there’s an invisible hero quietly at work behind the scenes: the CNC machine crafting every precise engine component. For consumers, fuel-efficient cars are often the top choice. For manufacturers, fuel efficiency is a critical factor that defines product competitiveness. Yet few realize that the journey toward efficiency doesn’t start at the gas pump—it begins with the machines that shape every micron of the engine. CNC machines are the unsung heroes making it all possible.
Headline
Knowledge
Redefining Makeup Removal: Evolving from Traditional Nonwovens to Medical-Grade Standards
As skincare routines become increasingly refined, makeup removal products are no longer secondary tools used solely for eliminating cosmetics. Instead, they have become the first line of defense for skin health, anti-irritation performance, and the sensory experience of daily rituals. The material composition and structural engineering of removal substrates—such as cotton pads, cleansing cloths, and wipes—are undergoing continuous optimization. The industry is shifting from simple absorbent functions toward advanced development that combines low friction, minimal residue, enhanced skin compatibility, and environmental sustainability.
Headline
Knowledge
The Superpower of PCBs: Unveiling the Magic of Heat Dissipation
Every PCB is like a bustling miniature city: the electric current flows like nonstop traffic, and the electronic components are the lively citizens. When “traffic jams” occur, heat builds up quickly. Without proper thermal design, LEDs, CPUs, and power transistors can “overheat” and fail. A PCB isn’t just a circuit-connecting board—it also acts as the city’s “air-conditioning engineer.” Copper traces serve as high-speed distribution lanes, thermal vias function like air ducts, and the board material and metal backing work as invisible heat-dispelling magic. Combined with airflow management inside the enclosure, the PCB efficiently channels heat away, ensuring components perform reliably and quietly safeguarding the entire electronic system.
Headline
Knowledge
From Marine Polysaccharides to Pet Wellness: A New Milestone in Fucoidan Applications
In recent years, companion animals have come to occupy an increasingly significant role in human life—not merely as pets, but as integral members of the family. As pet owners place growing emphasis on animal health and longevity, the demand for functional health ingredients has surged. Among these, fucoidan, a marine-derived polysaccharide extracted from brown seaweed, has emerged as a key player in the field of pet nutritional science. Recognized for its immunomodulatory, antioxidant, and cellular repair properties, fucoidan is redefining the standards for preventive care and holistic wellness in companion animals.
Headline
Knowledge
Eco-Friendly Tableware and Food Safety: A Choice for Both the Environment and Health
With a global increase in plastic reduction and environmental awareness, a growing number of businesses and consumers are opting for eco-friendly tableware made from natural or biodegradable materials to replace traditional plastic items. Eco-friendly tableware—such as that made from bamboo fiber, sugarcane bagasse, leaf fiber, or PLA—typically does not contain harmful substances like plasticizers or BPA, thus reducing potential health risks. According to the European Union's Food Contact Materials Regulation (EC No. 1935/2004), "food contact articles shall not transfer their constituents to food in quantities that could endanger human health." However, when production processes or manufacturing technologies are inadequate, eco-friendly tableware can still pose food safety risks.
Headline
Knowledge
Food Cleanliness and Its Impact on the Human Body: A Farm-to-Table Guarantee
The cleanliness of food, defined as the hygienic state of food surfaces and production environments, is crucial for consumer health. The World Health Organization (WHO) reports that globally, approximately 600 million people fall ill each year from consuming contaminated food, leading to about 420,000 deaths.
Headline
Knowledge
Green Printing Transformation Becomes the Core Competitiveness of a Sunset Industry
As global concerns over climate change, plastic pollution, and carbon emissions intensify, the printing industry is undergoing a profound green transformation. From packaging and commercial publishing to labels and promotional materials, green printing is no longer just an added value—it's becoming a fundamental requirement for brand compliance and supply chain standards.
Agree