What is Quick Die Change System (SMED)?
Knowledge

What is Quick Die Change System (SMED)?

Quick Die Change (SMED), or 10-minute die change, is a set of useful techniques for dealing with multiple batches of small quantities and improving the rapid response capability of the production system and is a type of lean production method. The point is to convert internal jobs to external job conversions as much as possible.
Published: Jun 28, 2022
What is Quick Die Change System (SMED)?

What is Quick Die Change Technology?

Quick mold change is a process improvement method that minimizes product changeover time, production start-up time, or adjustment time of the mold. The time required to install the machine, and set up the mold change can be significantly reduced.

Quick mold change is a process improvement method that minimizes the product mold change time, production start-up time, or adjustment time of plastic molds using industrial engineering. The quick die change system includes a combination of a die transfer arm, die clamp, die lifter, operation box, and power pump. Through the combination of automated equipment, the product changeover time, production start-up time, or adjustment time of the mold can be minimized. Users can quickly change the mold and clamp the mold, reduce the mold change time, produce a variety of small quantities, and reduce inventory and output. With the improvement of quality, the reduction of labor costs, the complete reduction of mold change time, and the direct benefits.

Quick Die Change is a team-based work improvement method that can significantly reduce the time required to set up a machine and set up a die change. Quickly switch to the next production process. The quick-change method also means that the quick-change method can and is often used to start a program and make it run quickly, and in a state of minimal waste.

  • Mold change: Any machine or production line must be stopped due to product replacement to perform replacement actions, also known as the setting.
  • Mold change time: The time when the machine or production line stops production due to the mold change action, that is, the interval between the last qualified part of the previous batch and the first qualified part of the next batch.
  • In-line mold change (in-line operation): Refers to the mold change action that can only be carried out when the machine stops production. Also known as internal preparation.
  • Off-line operation (outside operation): Refers to the mold changing action that the machine can still carry out during production operation, also known as external preparation.

What are the benefits of the Quick Die Change System?

Manufacturers related to injection machines, die-casting machines, punching machines, and hydraulic presses can obtain a lot of positive benefits at all levels of the manufacturing process. After introducing a digitally managed quick-change system, the most direct feeling is that there is no more benefit than greatly shortening the mold change time. In addition, the quick mold change system can also effectively help the machine to reduce idle time, improve machine utilization rate, and can accelerate the process efficiency of each machine, and reduce safety inventory in a small number of diverse production strategies.

  • Automation.
  • Just press the operation button on the operation panel.
  • The clamping force is the same. Safely increase.
  • If the operation panel is used, the on-site personnel can not only save manpower but also reduce the incidence of industrial safety accidents.
  • There is a safety warning function, when there is a problem, the machine will automatically stop.

Several quick die change systems: SMED, QDCS, and QMCS

  1. SMED (Single Minute Exchange of Die):
    SMED is a fast and efficient switching method. It is a useful technology for multiple batches of small quantities, reducing inventory, and improving the rapid response capability of production systems. It was first used in automobile manufacturing plants to achieve rapid mold switching. The SMED method is used to decompose the entire mold change process and optimize the mold change height of the related molds that affect the mold change process. After repeated optimization and testing, the mold replacement time is greatly shortened and the mold change efficiency is improved. The quick mold change system is a complete product system composed of related equipment derived from the technology of the quick mold change method, including QMCS and QDCS, which are used in different fields.
  2. QMCS (Quick Mold Change System):
    Mold is a mold (male mold and female mold), and the molten raw material is injected into the hollow cavity between the male mold and the female mold. When the high-temperature liquid cools and solidifies, separate the male mold and the female mold to obtain the desired product. Therefore, QMCS usually refers to the rapid mold change system for plastic injection machines or the rapid mold change system for die casting machines.
  3. QDCS (Quick Die Change System):
    Die, also known as die (upper die and lower die), uses gravity or oil pressure to make the upper and lower dies approach each other quickly, directly punch, forge, or extrude metal sheets, and press out the shape, size, and size between the upper and lower dies. So QMCS is usually a quick die change system for plastic injection machines or a quick die change system for stamping/forging dies.

Simply put, it is called QDCS when stamping, and QMCS is used when plastic injection/die casting.

Basic steps of SMED:
  • Step 1: Observe the current process.
  • Step 2: Distinguish between internal preparation time and external preparation time.
  • Step 3: Remove the waste of inner preparation.
  • Step 4: Continuous external preparation of internal preparations.
  • Step 5: Remove the adjustment.
Basic Laws of SMED:
  • Rule 1: Parallel operation, two or more people switch jobs together.
  • Rule 2: Do not move your hands or feet, rely mainly on your hands, and reduce the movement and movement of your feet.
  • Rule 3: Use special fixtures to improve efficiency.
  • Rule 4: It takes time to screw the screws, and other fixing methods can be used.
  • Rule 5: Do not remove the bolts and screws, and try to reduce the operation time and simplify the movements where they must be used.
  • Rule 6: Don't change benchmarks, it's a waste of time to adjust benchmarks.
  • Rule 7: Be prepared.
  • Rule 8: Simplify if you can.

The special mold change system can save more than 90% of the time compared with the traditional mold change method, greatly improve the utilization rate of the machine, and standardize the maintenance operation to ensure the safety of the staff. In the face of changes in labor conditions and industrial structure, the use of a special die-changing system for punch presses has become an important core of automated production enterprises.

Published by Jun 28, 2022 Source :letsmedia

Further reading

You might also be interested in ...

Headline
Knowledge
The Secret Behind Fuel Efficiency: How CNC Machines Maximize Every Drop of Fuel
When we lightly press the accelerator and enjoy a smooth drive, there’s an invisible hero quietly at work behind the scenes: the CNC machine crafting every precise engine component. For consumers, fuel-efficient cars are often the top choice. For manufacturers, fuel efficiency is a critical factor that defines product competitiveness. Yet few realize that the journey toward efficiency doesn’t start at the gas pump—it begins with the machines that shape every micron of the engine. CNC machines are the unsung heroes making it all possible.
Headline
Knowledge
Redefining Makeup Removal: Evolving from Traditional Nonwovens to Medical-Grade Standards
As skincare routines become increasingly refined, makeup removal products are no longer secondary tools used solely for eliminating cosmetics. Instead, they have become the first line of defense for skin health, anti-irritation performance, and the sensory experience of daily rituals. The material composition and structural engineering of removal substrates—such as cotton pads, cleansing cloths, and wipes—are undergoing continuous optimization. The industry is shifting from simple absorbent functions toward advanced development that combines low friction, minimal residue, enhanced skin compatibility, and environmental sustainability.
Headline
Knowledge
The Superpower of PCBs: Unveiling the Magic of Heat Dissipation
Every PCB is like a bustling miniature city: the electric current flows like nonstop traffic, and the electronic components are the lively citizens. When “traffic jams” occur, heat builds up quickly. Without proper thermal design, LEDs, CPUs, and power transistors can “overheat” and fail. A PCB isn’t just a circuit-connecting board—it also acts as the city’s “air-conditioning engineer.” Copper traces serve as high-speed distribution lanes, thermal vias function like air ducts, and the board material and metal backing work as invisible heat-dispelling magic. Combined with airflow management inside the enclosure, the PCB efficiently channels heat away, ensuring components perform reliably and quietly safeguarding the entire electronic system.
Headline
Knowledge
From Marine Polysaccharides to Pet Wellness: A New Milestone in Fucoidan Applications
In recent years, companion animals have come to occupy an increasingly significant role in human life—not merely as pets, but as integral members of the family. As pet owners place growing emphasis on animal health and longevity, the demand for functional health ingredients has surged. Among these, fucoidan, a marine-derived polysaccharide extracted from brown seaweed, has emerged as a key player in the field of pet nutritional science. Recognized for its immunomodulatory, antioxidant, and cellular repair properties, fucoidan is redefining the standards for preventive care and holistic wellness in companion animals.
Headline
Knowledge
Eco-Friendly Tableware and Food Safety: A Choice for Both the Environment and Health
With a global increase in plastic reduction and environmental awareness, a growing number of businesses and consumers are opting for eco-friendly tableware made from natural or biodegradable materials to replace traditional plastic items. Eco-friendly tableware—such as that made from bamboo fiber, sugarcane bagasse, leaf fiber, or PLA—typically does not contain harmful substances like plasticizers or BPA, thus reducing potential health risks. According to the European Union's Food Contact Materials Regulation (EC No. 1935/2004), "food contact articles shall not transfer their constituents to food in quantities that could endanger human health." However, when production processes or manufacturing technologies are inadequate, eco-friendly tableware can still pose food safety risks.
Headline
Knowledge
Food Cleanliness and Its Impact on the Human Body: A Farm-to-Table Guarantee
The cleanliness of food, defined as the hygienic state of food surfaces and production environments, is crucial for consumer health. The World Health Organization (WHO) reports that globally, approximately 600 million people fall ill each year from consuming contaminated food, leading to about 420,000 deaths.
Headline
Knowledge
Green Printing Transformation Becomes the Core Competitiveness of a Sunset Industry
As global concerns over climate change, plastic pollution, and carbon emissions intensify, the printing industry is undergoing a profound green transformation. From packaging and commercial publishing to labels and promotional materials, green printing is no longer just an added value—it's becoming a fundamental requirement for brand compliance and supply chain standards.
Headline
Knowledge
From Equipment to System: Building a Highly Consistent and Maintainable Smart Coffee Platform
In today’s retail and service environments, smart coffee solutions that offer high consistency, scalability, and ease of maintenance have become key criteria for commercial adoption. Based on advanced automation control technologies and incorporating Specialty Coffee Association (SCA) brewing standards, this platform integrates modular hardware architecture, data-driven algorithms, and cloud-based remote management. It enables comprehensive deployment—from standalone machines to full-site integration. This system-oriented design not only enhances product stability and flavor reproducibility, but also significantly reduces maintenance costs, making it an ideal solution for chain retailers, branded venues, and smart vending scenarios.
Headline
Knowledge
Development Trends of Intelligent Industrial Lifting Equipment
As global manufacturing accelerates its transition toward smart transformation, the demand for industrial lifting equipment and lubrication systems continues to rise. The Taiwan and Asia-Pacific markets are steadily expanding, with increasing demand for high-safety and precision-controlled lifting and lubrication equipment in the automotive repair and industrial manufacturing sectors. The advancement of smart manufacturing has promoted the integration of intelligent sensing and remote monitoring technologies, making these devices the core driving force of smart factories, fueling rapid market growth and serving as a key driver for Fugimaku’s continuous innovation and development.
Headline
Knowledge
The Tough Hero of the Tool World: The Secrets of Tungsten Carbide
In the world of industrial cutting tools, tungsten carbide is like a superhero: extremely hard, wear-resistant, heat-tolerant, and remarkably tough, able to stay sharp without chipping during high-speed cutting and prolonged machining. From rough milling to precision engraving, its variety of tool shapes and coating technologies allow it to tackle diverse challenges. Its applications even extend beyond cutting tools to wear-resistant parts, mining bits, and even fashion accessories. Whether in automotive components, aerospace molds, or everyday aesthetics, tungsten carbide stands as a reliable powerhouse in modern manufacturing. This article will take you deep into the material’s properties, machining principles, and real-world applications.
Headline
Knowledge
Professional Analysis and Application Value of Pneumatic Tools
Pneumatic tools are a category of industrial equipment powered by compressed air, widely used across manufacturing, assembly, maintenance, and construction sectors. Compared with electric tools, pneumatic tools are lighter in weight, deliver consistent output, offer high durability, and provide superior safety. These advantages make them the preferred choice for professionals in scenarios that require prolonged, high-frequency, and high-precision operations.
Headline
Knowledge
Common Chronic Diseases and Their Characteristics: A Personalized Health Management Guide
In pursuit of a fast-paced life, we often overlook our body's warning signs. According to the Health Promotion Administration, Ministry of Health and Welfare, chronic diseases like hypertension and diabetes have become a hidden threat to public health. Though these conditions progress slowly, long-term neglect can lead to serious consequences such as heart disease or stroke. This article will help you understand their causes and provide a simple “self-health management process” to proactively take control of your health.
Agree