What is the composition and working principle of the PHEV braking energy recovery system?
Knowledge

What is the composition and working principle of the PHEV braking energy recovery system?

With the development of the electric vehicle market, the braking energy recovery system has received extensive attention, because driving distance can be extended through the braking energy recovery system.
Published: Jan 13, 2022
What is the composition and working principle of the PHEV braking energy recovery system?

During the deceleration and braking of traditional internal combustion engine vehicles, the energy of deceleration is converted into heat energy and released through the braking system. In electric vehicles and hybrid vehicles, this wasted energy can be converted into electrical energy through braking energy recovery technology, stored in the battery, and further converted into driving energy. The braking energy recovery system includes a generator, a battery, and an intelligent battery management system.  With an Electromechanical Brake Servo (eBKV) system, the energy recovery system is coordinated with the mechanical braking system for vehicle braking.

Brake energy recovery system concept:

The braking system with braking energy recovery was developed for vehicles with three-phase current drives. Depending on the motor speed, the temperature of the high-voltage battery, and the charge level, the three-phase current drive can decelerate the vehicle in alternator mode. These factors fluctuate in electrical deceleration and may require hydraulic compensation. The alternation between electrical and hydraulic deceleration is called hybrid braking.

The electric drive system retrieves the electromotive energy released while braking. The three-phase current drive braking system controls the transfer of the generated energy to the high-voltage battery, where is stored for later use, thus increasing the cruising range of the electric vehicle.

The braking system includes:

Tandem master cylinder, wheel brakes, electromechanical brake booster, electronic stability control/anti-lock braking system (ESC/ABS), brake system accumulator, and three-phase current drive. The electromechanical brake booster increases the brake force applied by the driver to the brake petal.

The composition and working principle of eBKV:

When the driver operates the brake pedal, the push rod transmits the pedal actuation force through the piston rod to the tandem brake master cylinder. A brake pedal position sensor detects the force on the brake pedal and converts its value to a numerical amount. This value is sent from the brake pedal position sensor to the brake booster control unit. At the same time, the electromechanical brake booster detects the operating condition of the electric motor. This information indicating the operating condition of the engine comes from the engine (electric motor) position sensor of the electric motor/transmission unit. The brake booster control unit calculates the required increased braking force based on the driver's braking request combined with the motor condition information. The pinion shaft of the motor is engaged to allows the motor to supplement the braking force applied by the driver. The braking force applied to the brake petal can be amplified six-fold. 

The composition and working principle of the accumulator:

The brake system accumulator stores brake fluid and directs it back into the brake system when needed. Its purpose is to reduce brake pressure. If the brake booster control unit detects insufficient alternator deceleration, the pressurized brake fluid in the accumulator is sent back into the brake system. A corresponding signal is sent from the brake booster control unit to the control unit of the pressure accumulator. If the alternator decelerates sufficiently, the hydraulic brake pressure on the wheel brakes is reduced. This is achieved by flow of brake fluid into the accumulator, as the piston in the brake accumulator is pushed back.

The working process of hybrid braking:

  1. Deceleration request:
    The driver depresses the brake pedal to slow the vehicle and bring it to a complete stop. The driver's braking request is communicated via the brake booster control unit using the brake pedal position.
  2. Friction deceleration:
    The driver's request to decelerate increases the pressure in the hydraulic brake system to reduce vehicle speed.
  3. Energy recovery deceleration:
    • Support for regenerative deceleration: The brake boost control unit receives information from the power and control electronics of the electric drive to determine if the three-phase current drive is capable of supporting the hydraulic braking system. This condition will be met when the vehicle is moving at high speed. Depending on the available alternator braking torque, the hydraulic brake pressure will remain unchanged or it will be decreased. As the vehicle speed decreases, the braking torque of the alternator increases. The hydraulic brake pressure on the wheels is then reduced according to the available alternator braking torque. For this purpose, the brake system accumulator draws in brake fluid to reduce the pressure in the hydraulic brake system. This means that only the braking torque of the alternator will be used for deceleration for a period of time.
    •  Insufficient support of three-phase current drive device: If the braking torque of the alternator decreases during deceleration, the brake booster control unit sends a signal to the control unit of the brake system accumulator. The accumulator then returns the stored brake fluid to the brake system, increasing the pressure in the hydraulic brake system. This also occurs when the vehicle brakes and comes to a complete stop. The alternator torque is discontinued when the vehicle speed is below 10 km/h. At this time, the vehicle is braked by hydraulic pressure alone.
  4. Function backup mechanism:
    • When the eBKV has a component failure (such as the controller, booster motor, sensor, etc.), resulting in no brake booster, the eBKV will light up a yellow or red brake warning light on the vehicle instrument panel. If the Electronic Stability Control (ESC) is still working normally and the driver brakes at this time, the ESC will activate the eBKV function to supplement the force the driver applies to the brake pedal.
    • When the eBKV and ESC have functional failures at the same time, and there is no brake booster, the eBKV will, like a traditional vacuum booster, ensure that the mechanical device can still meet the 0.25g deceleration of the whole vehicle under the 500N pedal force required by the national standard.
Published by Jan 13, 2022 Source :artc

Further reading

You might also be interested in ...

Headline
Knowledge
What is Laser Cutting and Uses?
There is more than one type of laser cutting. It can use different medias to generate lasers of different wavelengths, so the scope, characteristics and functions of the applications are different. In the following, the article will take you to understand the uses of laser cutting in different fields, so that you can better understand the laser cutting technology.
Headline
Knowledge
What is A Punch? Introduction of Punching Principles, Types and Materials
A punch, also known as a punch press, is a forming process technology. There are many kinds of it. Due to different structural principles, the price and processing effect will change in response, but they all have the same structure. With the rapid development of the stamping industry, competition in all walks of life has increased. "Punches are also used in various industries, such as aerospace, education, auto parts, diving equipment and so on.
Headline
Knowledge
What is an Injection Mold?
An injection mold is a tool for producing plastic products; it is also a tool for imparting complete structure and precise dimensions to plastic products. Because the production method is to inject the plastic melted at high temperature into the mold through high pressure and mechanical drive.
Headline
Knowledge
What is a Belt Drive?
A method of transmitting rotational force between two separated shafts using pulleys and belts. The rotation speed ratio is inversely proportional to the diameter of the two pulleys, and it can slide when the load is excessive to prevent mechanical damage.
Headline
Knowledge
What are Welding and Welding Types?
Welding refers to the joining or fusing of workpieces by heating and/or compression to form a continuum. The fusion of weldments can be based entirely on the heat generated by the arc to fuse the weldments.
Headline
Knowledge
What are the Classifications of Packaging Equipment?
Packaging involves all walks of life. Manufacturers that produce physical products and need to enter the circulation field all need packaging processes, especially in light industry, and packaging equipment is indispensable. With the development of all walks of life, more and more industries use packaging equipment to reduce the labor intensity of the packaging process, improve product quality, reduce investment costs, and improve the labor environment. In the following, we are going to learn more about the common classifications of packaging equipment.
Headline
Knowledge
What is Paint Treatment Technology?
The baking paint treatment can give metal various colors and different textures. It is painted on the metal surface as a surface treatment, which has both protective and aesthetic functions.
Headline
Knowledge
Safety and Use of Woodworking Machinery
Woodworking machine, as the name suggests, is the mechanical equipment used in wood processing. It is a variety of cutting and processing equipment used in the process of sawing logs and processing them into wood products, and furniture machinery is an important part of woodworking machinery. Woodworking machines are the same as machine tools, and can be divided into milling machines, lathes, planers, drilling, rotary cutting, sanding, etc. according to different processing methods. However, do you understand the safety and use of woodworking machinery? Check out the following.
Headline
Knowledge
What is the Importance of Lithography Technology and Mask Aligner in Chip Manufacturing?
Lithography is the most important processing technology of integrated circuits and the most critical technology for manufacturing chips. In the entire chip manufacturing process, the implementation of almost every process is inseparable from the technology of lithography.
Headline
Knowledge
What is A Switching Power Supply? Through Principal Analysis, Understand the Basics In 3 Minutes!
Many people do not know about switching power supply and have always thought that is similar to a linear power supply. Actually, there is difference. The following will explain the principles of basic regarding switching power supplies. Learn with us now!
Headline
Knowledge
Basics to An Electronic Connector
Electronic connectors are also often referred to as circuit connectors, electrical connectors, and conductor devices that bridge two conductors on a circuit so that current or signals can flow from one conductor to another. An electronic connector is a motor system that can provide a separable interface to connect two secondary electronic systems. Simply put, the components used to complete the electrical connection between circuits or electronic machines are called connector.
Headline
Knowledge
What is A KVM Switch?
KVM switches allow you to control multiple computers from a single keyboard, monitor and mouse, increasing productivity, saving space and money. This exclusive feature also provides IT administrators with multiple computers or servers, centralized real-time updates and maintenance.
Agree