Do You Know About Semiconductor Supply Chain?
Knowledge

Do You Know About Semiconductor Supply Chain?

Semiconductor supply chain include all kinds of semiconductor manufacturing and design industries, such as IC manufacturing, IC packaging and testing, IC design, and discrete component manufacturing.
Published: Mar 09, 2023
Do You Know About Semiconductor Supply Chain?

Development of the Semiconductor Industry

The explosion of emerging technology applications such as 5G, high-performance computing, and the Internet of Things, coupled with the strong demand for automotive electronics, has driven wafer foundry production capacity to continue to rise. The machinery and equipment industry has benefited from semiconductor and 5G-related industries. In addition, the epidemic has accelerated the pace of manufacturers to install automation equipment. The production capacity of general-purpose production machinery and parts, linear slides, electronics and semiconductor equipment and parts, and metal manipulator tools has increased, to meet the strong global demand for chips and related semiconductor products.

In the production process of IC chips, the designed circuit diagram is first transferred to the semiconductor wafer. Through a series of procedures, an integrated circuit (IC, Integrated Circuit) is formed on the surface of the wafer, which is then cut into a piece called Dies. These Dies are finally wrapped in a protective shell, forming the final chip.

Upstream of the Semiconductor Industry: IC Design Process

A chip is a complete circuit system used to process information. Before manufacturing a chip, engineers must first plan the functions that the chip needs to have according to requirements, and which areas on the chip to distribute these functions. Hardware Description Language (HDL) Describes the chip's functions and puts it into program code. An Electronic Design Automation (EDA) tool allows the computer to convert the program code into a circuit diagram.

Chips can be divided into 4 categories according to their functions:
  1. Memory IC: Used to store data. Divided into ICs that will either continue or not continue to hold stored data after the power supply is stopped.
    •  Volatile: Data will disappear when power is turned off, including Dynamic Random-Access Memory (DRAM).
    • Non-Volatile: Data will continue to be stored after power is turned off, including Ready Only Memory (ROM) and Flash.
  2. Micro Component IC: a component with special data processing functions.
    • Micro Processor Unit (MPU): Processing complex logic operations, such as Central Processing Unit (CPU); or microprocessor, such as Instruction Set Architecture (ISA).
    • Micro Controller Unit (MCU): It is equivalent to a microcomputer, which integrates the basic components of the computer: CPU, memory, and input and output interfaces (I/O) on an IC chip. Also known as Single-Chip Microcomputer.
    • Digital Signal Processor (DSP): Processing and computing Digital Signal.
    • Micro Peripheral (MPR): Support MPU, MCU circuit components. Used to process the chips of computer peripheral equipment.
  3. Logic IC: IC that performs logic operations.
    • Standard Logic IC: Perform basic logic operations, such as AND, OR, etc., mass-produce and sell IC standard products to different customers.
    • Application Specific Integrated Circuit (ASIC): IC tailored for special purposes or a single customer, with the characteristics of customization, differentiation, and small quantity, and is used in markets with fast industrial changes and high integration requirements.
  4. Analog IC: An IC that processes analog signals, mainly used in Power Management, Amplifier, and Converter.

In the IC design industry, when engineers design ICs, in addition to the IC design itself, they also use IC design tools, which are also part of the IC design upstream of the semiconductor supply chain.

Midstream of the Semiconductor Industry: IC Manufacturing Process

When the IC design is completed, it will enter the production stage, that is, IC manufacturing. This stage is the midstream segment of the industrial semiconductor supply chain. In simple terms, IC manufacturing means that the foundry must transfer the designed circuit diagram to the semiconductor wafer.

IC manufacturing process: The IC manufacturing process of transferring the design drawing to the wafer is roughly divided into 6 stages, in order: wafer, target sputtering, coating photoresist, photomask lithography, etching, and photoresist removal.

IC manufacturing plants that manufacture chips need to use a variety of IC manufacturing equipment in the process of transferring circuits to wafers; there are also some important IC manufacturing materials in the process, such as basic material wafers, sputtering on the wafer as a metal thin film target for circuits, photomasks for transferring circuit diagrams, and chemicals such as photoresist. These IC manufacturing equipment and IC manufacturing materials are also part of the IC industry.

Downstream of the Semiconductor Industry: IC Packaging and Testing Process

When the circuit on the design drawing is placed on the wafer to form the IC, then it is necessary to test and package it, that is, to test whether these ICs can work, and then cut the IC on the wafer into a piece of die/ Die. Because these bare dies are very fragile, if the IC is usable after testing, it must be protected by wrapping it in a shell. This encapsulated Dai is now the final finished "chip".

Packaging involves wrapping the IC die into a chip. There needs to be a carrier that the die can be fixed to. This component is responsible for carrying the die and allowing the die to be connected to the outside. There are two main types of carriers: IC carrier board and Lead Frame. After the die is placed on the IC carrier board or lead frame, it is protected by a case.

IC packaging and testing manufacturers also use chip testing equipment and chip packaging equipment when conducting chip testing and chip packaging. Chip packaging can use various chip packaging materials, such as IC carrier plates, lead frames, solder balls, gold wire, and molding materials such as packaging glue and packaging shell.

Published by Mar 09, 2023 Source :stockfeel

Further reading

You might also be interested in ...

Headline
Knowledge
How Does the Electroplating Process Work for ABS Plastic?
Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
Headline
Knowledge
What Are the Fundamentals and Benefits of Choosing between Liquid and Powder Coating?
Metal fabricators aiming to venture into finishing processes should familiarize themselves with two prevalent options—liquid and powder coating—along with the prerequisites necessary for a company seeking to employ either or both.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industry demands, the laser industry and technology are shifting their focus towards meeting the requirements of 5G semiconductors and smart vehicle processes. While Taiwan's laser industry has a well-established foundation built over the years, sustaining international competitiveness necessitates a proactive advancement in independent laser technology.
Headline
Knowledge
What is the Purpose of Surface Treatment for Metals?
Defects are bound to arise during the reprocessing of mechanical equipment or parts related to metal. As a result, the final item's surface treatment process plays a crucial role, serving the dual purpose of enhancing aesthetics and providing protection. This process not only improves the performance of metal parts but also helps prevent rust.
Headline
Knowledge
Selecting a Hydraulic Press and Understanding its Manufacturing Procedure
Hydraulic presses find applications in compaction, assembly, pressing, forming, embossing, and stretching. They play a crucial role in compaction within the cosmetics sector, assembly in the automotive industry, molding of electronic products, and stamping in the home appliance industry.
Headline
Knowledge
Introduction to RFID Tags: The Significance of RFID in Modern Retail Supply Chains
There are two types of RFID systems: passive and active. For those unfamiliar with RFID, you may be curious about the distinctions between these types and which one suits your application best. In the following, we offer a brief explanation.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industrial demands, the laser industry and technology are shifting towards meeting the requirements of 5G semiconductors and advanced processes for smart vehicles. While Taiwan's laser industry has made substantial progress over the years, maintaining alignment with international advancements necessitates a proactive push in independent laser technology.
Headline
Knowledge
Exploring Sheet Metal: Defining Sheet Metal and its Various Applications, with a Focus on Laser Applications
The term originates from English, known as plate metal. Typically, certain metal sheets undergo plastic deformation either manually or through die-stamping to attain the desired shape and size. These sheets can then undergo additional shaping through welding or a limited amount of mechanical processing to create more intricate components.
Headline
Knowledge
Comprehending CNC Motion Control and Three Common Types
The primary advantage provided by various types of CNC machine tools is enhanced automation, as it allows for the reduction or elimination of operator intervention in the production of workpieces.
Headline
Knowledge
How is Automatic Optical Inspection (AOI) Technology involved?
What is AOI? AOI stands for automatic optical inspection technology, known for its non-contact nature, rapid speed, high precision, and stability. This technology effectively addresses the limitations of manual visual inspection in quality management.
Headline
Knowledge
What Constitutes a Planing Machine?
A shaper is a machine tool that employs the relative linear motion between a workpiece and a single-point cutting tool to shape a linear toolpath. Its cutting process is similar to that of a lathe, but it typically follows a linear, as opposed to a helical, trajectory.
Headline
Knowledge
What Constitutes the Principal Components of a Shaper Machine?
Shaper machines are intricate pieces of equipment designed for precision machining. They comprise several essential components, each contributing to the machine's overall functionality and effectiveness. To gain a comprehensive understanding of how a shaper machine operates, it's crucial to examine the role and interplay of these individual parts within the complete system.
Agree