What Exactly is the Third Generation Semiconductor? GaN, SiC are The Key Technology?
Trend

What Exactly is the Third Generation Semiconductor? GaN, SiC are The Key Technology?

The third-generation semiconductor is currently the hottest topic in the high-tech field, and plays an indispensable role in the development of 5G, electric vehicles, renewable energy, and Industry 4.0. What is the third generation of semiconductors? In this article, we will take you to understand this key technology that can affect the future of the technology industry from the most simple and comprehensive perspective.
Published: Aug 22, 2022
What Exactly is the Third Generation Semiconductor? GaN, SiC are The Key Technology?

As the world enters the era of IoT, 5G, green energy, and electric vehicles, Wide Band Gap (WBG) semiconductors that can fully demonstrate high-voltage, high-temperature, and high-frequency capabilities and meet the requirements of current mainstream applications for high energy conversion efficiency Beginning to become the darling of the market, semiconductor materials opened the prelude to the new era of the third-generation semiconductor.

What is the Third Generation Semiconductor and Wide Energy Gap?

When it comes to the third-generation semiconductors, let’s first briefly introduce the first and second-generation semiconductors. In the field of semiconductor materials, the first generation semiconductor is "silicon" (Si), the second generation semiconductor is "gallium arsenide" (GaAs), and the third generation semiconductor (also known as "wide energy gap semiconductor", WBG) is "Silicon carbide" (SiC) and "gallium nitride" (GaN).

The "energy gap" in wide-gap semiconductors, in the most vernacular way, represents "one energy gap", which means "the minimum energy required to make a semiconductor go from insulating to conducting."

The silicon and gallium arsenide of the first and second generation semiconductors are low energy gap materials, with values ​​of 1.12 eV and 1.43 eV respectively. The energy gap of the third generation (wide energy gap) semiconductors, SiC and GaN reach 3.2 eV and 3.4 eV, respectively. Therefore, when encountering high temperature, high voltage and high current, compared with the first and second generation, the third generation semiconductor will not easily change from insulating to conductive, the characteristics are more stable, and the energy conversion is better.

The Third-Generation Semiconductor Myth

With the advent of the era of 5G and electric vehicles, the demand for high-frequency, high-speed computing, and high-speed charging of technology products has increased. The temperature, frequency, and power of silicon and gallium arsenide have reached the limit, and it is difficult to increase the power and speed; once the operating temperature exceeds 100. The first two generations of products are more prone to failure, so they cannot be used in more severe environments. In addition, the world has begun to pay attention to the issue of carbon emissions, so the third-generation semiconductors with high energy efficiency and low energy consumption have become the new darling of the times.

The third-generation semiconductors can still maintain excellent performance and stability at high frequencies, and at the same time have the characteristics of fast switching speed, small size, and rapid heat dissipation. The volume of the module and cooling system.

Many people think that third-generation semiconductors, like advanced manufacturing processes, are accumulated from the technologies of first- and second-generation semiconductors, but this is not the case. From the picture, these three generations of semiconductors are actually in a parallel state, and they develop their own technologies. Since China, the United States, and the European Union are actively developing third-generation semiconductors, Taiwan, one of the keys to the semiconductor industry chain, is bound to keep up with this trend.

SiC and GaN Have Their Own Advantages and Different Development Fields

After understanding the differences of the first three generations of semiconductors, we then focus on the materials of the third generation semiconductors - SiC and GaN. The application fields of these two materials are slightly different. At present, GaN components are often used in fields with voltages below 900V, such as chargers, bases Taiwan, 5G communication-related and other high-frequency products; SiC is a voltage greater than 1,200 V, such as electric vehicle-related applications.

SiC is composed of silicon (Si) and carbon (C), which has strong bonding force and is thermally, chemically, and mechanically stable. Due to the characteristics of low loss and high power, SiC is suitable for high-voltage and high-current application scenarios, such as Electric vehicles, electric vehicle charging infrastructure, solar and offshore wind power and other green energy power generation equipment.

In addition, SiC itself is a "homogenous epitaxy" technology, so it has good quality and good component reliability. This is also the main reason why electric vehicles choose to use it. In addition, it is a vertical component, so the power density is high.

Today, the battery power system of electric vehicles is mainly 200V-450V, and higher-end models will develop towards 800V, which will be the main market for SiC. However, SiC wafers are difficult to manufacture, and the source crystals for crystal growth are highly demanding and difficult to obtain. In addition, the crystal growth technology is difficult, so mass production is still not possible at present, which will be described in more detail later.

GaN is a lateral element and is grown on different substrates, such as SiC or Si substrates. It is a "hetero-epitaxy" technology. The quality of the GaN film produced is poor. Although it can be used in consumer areas such as fast charging, it is used in electric vehicles. Or there are some doubts in the industry, and it is also the direction that manufacturers are eager to break through.

The application fields of GaN include high-voltage power components (Power) and high-frequency components (RF). Power is often used as a power converter and rectifier, while the commonly used Bluetooth, Wi-Fi, and GPS positioning are among the applications of RF components. one.

In terms of substrate technology, the production cost of GaN substrates is relatively high, so GaN components are all based on silicon. GaN-on-SiC) two wafers are fabricated.

Commonly heard GaN process technology applications, such as the above-mentioned GaN RF RF components and Power GaN, all come from GaN-on-Si substrate technology; as for GaN-on-SiC substrate technology, due to the difficulty of manufacturing silicon carbide substrates (SiC), The technology is mainly in the hands of a few international manufacturers, such as Cree, II-VI and ROHM.

Although the third-generation semiconductors have better performance in terms of performance, their technical threshold is higher, and not all electronic components and technical applications require such high performance, so the third-generation semiconductors will not completely replace the previous ones. After the second generations have been replaced by the old, in principle, the third generations will each play an important role in different fields. Basically, the first generation will focus on logic ICs, memory ICs, micro-component ICs and analog ICs used in computers and consumer electronics, the second generation will focus on RF chips in the field of mobile communications, and the third generation will focus on The biggest driving force comes from the fields of 5G, IoT, green energy, electric vehicles, satellite communications and military, and high-frequency radio frequency components and high-power power semiconductor components are the main applications. Among them, 5G and electric vehicles are regarded as the biggest drivers and driving forces to accelerate the development of third-generation semiconductors.

Published by Aug 22, 2022 Source :TechNews

Further reading

You might also be interested in ...

Headline
Trend
2023 Technology and Data Storage Trend Forecast
The innovative development of technology and storage in 2023, including multi-cloud, will tend to be localized in 2023, cloud service providers will face more transparency requirements, heat-assisted magnetic recording (HAMR) technology will become more popular, etc.
Headline
Trend
Sustainable Fashion and Digital Innovation Trends in the Textile Industry
The digitalization of the textile industry, which is highly connected with the consumer market, is the general trend. In particular, the digitalization of the supply chain such as 3D simulation technology can greatly simplify and speed up the product development and production process, and at the same time achieve the reduction of manpower, which promotes fashion and textiles. Industry players are all vigorously promoting digital transformation, and the recent digital development of the textile industry has mostly focused on issues such as sustainable fashion, circular economy, and digital innovation.
Headline
Trend
What is PCIe? The Features of PCIe 6.0 and the Specifications of PCIe 7.0
PCIe is a standard interface for connecting PC components, such as graphics cards or storage devices, and is used in a wide range of devices, from embedded systems, handheld devices, industrial applications, and servers to supercomputers, etc. For consumers, upgrading the advantage of the later PCIe is that it can support faster memory.
Headline
Trend
Smart IoV System with Seamless Experience - Smart Cockpit
With the rapid development of the automotive industry in smart driving, safety assistance, automotive electronics, and human-machine interface-related technologies, the integration of virtual and real superimposed displays, driver monitoring systems (DMS), interactive functions, Internet of Things (IoT) of the smart cockpit system have become the current trend.
Headline
Trend
Is Green Building A Future Coexists with The Environment, or Is It the Evolution Direction of Contemporary Engineering?
Buildings are the largest consumers of energy in the world. Under the crisis of global warming, the development of "green buildings" is an urgent part of the energy-saving and carbon-reduction consensus of all countries. The main concept of green building is "sustainable development", and each stage needs to conform to the principle of environmental friendliness. The birth of green building is actually closely related to the environmental protection issue that the whole world is paying attention to.
Headline
Trend
The Rise of Fog Computing
Now that cloud computing is popular, the application of Internet of Things is also increasing day by day. However, in terms of architecture, in order to overcome the lack of computing power of connected devices, people have also begun to develop so-called fog computing, which is different from cloud services. And, what is it?
Headline
Trend
The Trend of Unmanned Factories, Industrial Robots Have Become the Foundation of Smart Manufacturing in Various Industries
Even though the future manufacturing and production bases will still be dominated by East Asia, remote work due to the epidemic has broken the geographical constraints. Under the trend of major companies competing for talents, the shortage of manpower in the future manufacturing industry has become the norm. In the future, unmanned factory is the trend to go...
Headline
Trend
Home Health Care Integration Program
With the advent of the era of aging and a declining birth rate, the demand for home medical care is increasing. Connect upstream and downstream medical institutions in series to provide complete patient-centered home medical services.
Headline
Trend
Cement Industry Launches Net Zero Carbon Emissions
With technological progress and industrial restructuring, the cement industry is actively introducing a circular economy and has become an international pioneer in net-zero carbon emissions through alternative fuels, alternative raw materials, waste heat power generation, green power development, and carbon capture technologies.
Headline
Trend
Sustainable Intelligent Manufacturing of Plastic and Rubber Machines
With the rise of global environmental protection awareness, the improvement of process efficiency and pollution reduction of plastic products have become important issues for the rubber and plastic industry. In response to the shortage of workers and the reduction of personnel contact, mechanical automation and cloud services have become the new normal in the industry.
Headline
Trend
Future Development Trends of the Laser Processing Industry
Lasers are used in a wide range of industries, especially in processing. The entire laser processing industry is currently moving in the direction of high power, ultra-short pulse, and intelligence.
Headline
Trend
Overview of Digitally Controlled Incremental Forming Methods for Sheet Metal and Future Market Trends
The shortened product life cycle, low-volume variety, and customization have become mainstream. Quick response and flexible adjustment are the keys to the competitiveness of the manufacturing industry. Rapid trial production has become an international research project to win orders and reduce development risks.
Agree