The Foundation of the Semiconductor Industry: What is A Wafer?
Knowledge

The Foundation of the Semiconductor Industry: What is A Wafer?

In the semiconductor news, wafers are always mentioned in terms of dimensions, such as 8-inch or 12-inch wafers, but what exactly is a so-called wafer? What does the 8 inches refer to? How difficult is it to produce large-sized wafers? The following is a step-by-step introduction to the most important foundation of semiconductors - what is a "wafer".
Published: Aug 25, 2022
The Foundation of the Semiconductor Industry: What is A Wafer?

What is A Wafer?

Wafers are the basis for the manufacture of various computer chips. We can compare chip manufacturing to building a house with Lego blocks, and by stacking layer by layer, we can complete our desired shape (that is, all kinds of chips). However, if there is no good foundation, the built house will be crooked and unsatisfactory. In order to make a perfect house, a stable base plate is required. For wafer fabrication, this substrate is the wafer described next.

First of all, recall that when I was a child with Lego blocks, there would be a small round protrusion on the surface of the blocks. With this structure, we can stably stack the two blocks together without using glue. Wafer fabrication, in a similar way, holds the subsequently added atoms together with the substrate. Therefore, we need to find substrates with neat surfaces to meet the conditions required for subsequent fabrication.

In solid materials, there is a special crystal structure - Monocrystalline. It has the property of atoms closely arranged one after the other, which can form a flat atomic surface. Therefore, using a single crystal to make a wafer can meet the above requirements. However, how to produce such a material, there are mainly two steps, namely purification and crystal pulling, after which such a material can be completed.

How To Make a Single Crystal Wafer

The purification is divided into two stages. The first step is metallurgical purification. This process is mainly to add carbon to convert silicon oxide into silicon with a purity of more than 98% by means of redox. Most of the refining of metals, such as iron or copper, is done in this way to obtain metals of sufficient purity. However, 98% is still not enough for wafer manufacturing and still needs to be improved further. Therefore, the Siemens process will be used for further purification, so that the high-purity polysilicon required for the semiconductor process will be obtained.

Next, is the step of pulling crystals. First, the previously obtained high-purity polysilicon is melted to form liquid silicon. After that, the single-crystal silicon seed contacts the liquid surface, and slowly pulls up while rotating. As for why single-crystal silicon seeds are needed, it is because silicon atoms are arranged in the same way as people line up, and they will need to be in the front line to let later people how to arrange them correctly. Finally, after the silicon atoms leaving the liquid surface solidify, the neatly arranged monocrystalline silicon pillars are completed.

However, what do 8 inches and 12 inches stand for? In fact, it refers to the crystal column. How difficult is it to make large wafers? As mentioned earlier, the production process of the crystal column is like making marshmallows, and it is formed while rotating. Anyone who has made marshmallows should know that it is quite difficult to make large and solid marshmallows, and the process of pulling crystals is the same. The speed of rotation and temperature control will affect the quality of the crystal column. Therefore, the larger the size, the higher the speed and temperature requirements for crystal pulling, so it is more difficult to make high-quality 12-inch wafers than 8-inch wafers.

However, an entire silicon pillar cannot be used as a substrate for wafer fabrication. In order to generate silicon wafers one by one, a diamond knife is used to cut the silicon pillars laterally into wafers, and the wafers can be polished to form wafers. Fabricate the required silicon wafers. After so many steps, the fabrication of the wafer substrate is complete, and the next step is the step of stacking the house, which is wafer fabrication.

Published by Aug 25, 2022 Source :Business Next

Further reading

You might also be interested in ...

Headline
Knowledge
How Does the Electroplating Process Work for ABS Plastic?
Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
Headline
Knowledge
What Are the Fundamentals and Benefits of Choosing between Liquid and Powder Coating?
Metal fabricators aiming to venture into finishing processes should familiarize themselves with two prevalent options—liquid and powder coating—along with the prerequisites necessary for a company seeking to employ either or both.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industry demands, the laser industry and technology are shifting their focus towards meeting the requirements of 5G semiconductors and smart vehicle processes. While Taiwan's laser industry has a well-established foundation built over the years, sustaining international competitiveness necessitates a proactive advancement in independent laser technology.
Headline
Knowledge
What is the Purpose of Surface Treatment for Metals?
Defects are bound to arise during the reprocessing of mechanical equipment or parts related to metal. As a result, the final item's surface treatment process plays a crucial role, serving the dual purpose of enhancing aesthetics and providing protection. This process not only improves the performance of metal parts but also helps prevent rust.
Headline
Knowledge
Selecting a Hydraulic Press and Understanding its Manufacturing Procedure
Hydraulic presses find applications in compaction, assembly, pressing, forming, embossing, and stretching. They play a crucial role in compaction within the cosmetics sector, assembly in the automotive industry, molding of electronic products, and stamping in the home appliance industry.
Headline
Knowledge
Introduction to RFID Tags: The Significance of RFID in Modern Retail Supply Chains
There are two types of RFID systems: passive and active. For those unfamiliar with RFID, you may be curious about the distinctions between these types and which one suits your application best. In the following, we offer a brief explanation.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industrial demands, the laser industry and technology are shifting towards meeting the requirements of 5G semiconductors and advanced processes for smart vehicles. While Taiwan's laser industry has made substantial progress over the years, maintaining alignment with international advancements necessitates a proactive push in independent laser technology.
Headline
Knowledge
Exploring Sheet Metal: Defining Sheet Metal and its Various Applications, with a Focus on Laser Applications
The term originates from English, known as plate metal. Typically, certain metal sheets undergo plastic deformation either manually or through die-stamping to attain the desired shape and size. These sheets can then undergo additional shaping through welding or a limited amount of mechanical processing to create more intricate components.
Headline
Knowledge
Comprehending CNC Motion Control and Three Common Types
The primary advantage provided by various types of CNC machine tools is enhanced automation, as it allows for the reduction or elimination of operator intervention in the production of workpieces.
Headline
Knowledge
How is Automatic Optical Inspection (AOI) Technology involved?
What is AOI? AOI stands for automatic optical inspection technology, known for its non-contact nature, rapid speed, high precision, and stability. This technology effectively addresses the limitations of manual visual inspection in quality management.
Headline
Knowledge
What Constitutes a Planing Machine?
A shaper is a machine tool that employs the relative linear motion between a workpiece and a single-point cutting tool to shape a linear toolpath. Its cutting process is similar to that of a lathe, but it typically follows a linear, as opposed to a helical, trajectory.
Headline
Knowledge
What Constitutes the Principal Components of a Shaper Machine?
Shaper machines are intricate pieces of equipment designed for precision machining. They comprise several essential components, each contributing to the machine's overall functionality and effectiveness. To gain a comprehensive understanding of how a shaper machine operates, it's crucial to examine the role and interplay of these individual parts within the complete system.
Agree