The Foundation of the Semiconductor Industry: What is A Wafer?
Knowledge

The Foundation of the Semiconductor Industry: What is A Wafer?

In the semiconductor news, wafers are always mentioned in terms of dimensions, such as 8-inch or 12-inch wafers, but what exactly is a so-called wafer? What does the 8 inches refer to? How difficult is it to produce large-sized wafers? The following is a step-by-step introduction to the most important foundation of semiconductors - what is a "wafer".
Published: Aug 25, 2022
The Foundation of the Semiconductor Industry: What is A Wafer?

What is A Wafer?

Wafers are the basis for the manufacture of various computer chips. We can compare chip manufacturing to building a house with Lego blocks, and by stacking layer by layer, we can complete our desired shape (that is, all kinds of chips). However, if there is no good foundation, the built house will be crooked and unsatisfactory. In order to make a perfect house, a stable base plate is required. For wafer fabrication, this substrate is the wafer described next.

First of all, recall that when I was a child with Lego blocks, there would be a small round protrusion on the surface of the blocks. With this structure, we can stably stack the two blocks together without using glue. Wafer fabrication, in a similar way, holds the subsequently added atoms together with the substrate. Therefore, we need to find substrates with neat surfaces to meet the conditions required for subsequent fabrication.

In solid materials, there is a special crystal structure - Monocrystalline. It has the property of atoms closely arranged one after the other, which can form a flat atomic surface. Therefore, using a single crystal to make a wafer can meet the above requirements. However, how to produce such a material, there are mainly two steps, namely purification and crystal pulling, after which such a material can be completed.

How To Make a Single Crystal Wafer

The purification is divided into two stages. The first step is metallurgical purification. This process is mainly to add carbon to convert silicon oxide into silicon with a purity of more than 98% by means of redox. Most of the refining of metals, such as iron or copper, is done in this way to obtain metals of sufficient purity. However, 98% is still not enough for wafer manufacturing and still needs to be improved further. Therefore, the Siemens process will be used for further purification, so that the high-purity polysilicon required for the semiconductor process will be obtained.

Next, is the step of pulling crystals. First, the previously obtained high-purity polysilicon is melted to form liquid silicon. After that, the single-crystal silicon seed contacts the liquid surface, and slowly pulls up while rotating. As for why single-crystal silicon seeds are needed, it is because silicon atoms are arranged in the same way as people line up, and they will need to be in the front line to let later people how to arrange them correctly. Finally, after the silicon atoms leaving the liquid surface solidify, the neatly arranged monocrystalline silicon pillars are completed.

However, what do 8 inches and 12 inches stand for? In fact, it refers to the crystal column. How difficult is it to make large wafers? As mentioned earlier, the production process of the crystal column is like making marshmallows, and it is formed while rotating. Anyone who has made marshmallows should know that it is quite difficult to make large and solid marshmallows, and the process of pulling crystals is the same. The speed of rotation and temperature control will affect the quality of the crystal column. Therefore, the larger the size, the higher the speed and temperature requirements for crystal pulling, so it is more difficult to make high-quality 12-inch wafers than 8-inch wafers.

However, an entire silicon pillar cannot be used as a substrate for wafer fabrication. In order to generate silicon wafers one by one, a diamond knife is used to cut the silicon pillars laterally into wafers, and the wafers can be polished to form wafers. Fabricate the required silicon wafers. After so many steps, the fabrication of the wafer substrate is complete, and the next step is the step of stacking the house, which is wafer fabrication.

Published by Aug 25, 2022 Source :Business Next

Further reading

You might also be interested in ...

Headline
Knowledge
Understanding the Logistics and Transportation Sector
As the number of e-commerce transactions continues to surge, there is a parallel increase in the demand for logistics services. Amidst the ongoing transformation and upgrade of the industry, the integration of smart technology has emerged as a pivotal factor in driving its development.
Headline
Knowledge
Understanding Mechanism Design and Its Practical Applications
Creating an effective mechanism design entails thoughtful consideration of factors such as materials, specifications, precision, manufacturing processes, and functionality. Moreover, it must be cost-effective to ensure the development of a successful mechanism design.
Headline
Knowledge
Understanding the Granulation Process
Plastic granulation technology plays a pivotal role in the manufacturing of plastic products and the recycling of resources. It is employed to produce a diverse range of plastic products or raw materials, offering both environmental and economic advantages.
Headline
Knowledge
What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
Headline
Knowledge
How Does the Electroplating Process Work for ABS Plastic?
Over the past few years, plastic electroplating has gained widespread popularity, particularly in the decorative electroplating of plastic components. Among the various types of plastic utilized in electroplating, ABS plastic stands out as the most extensively employed.
Headline
Knowledge
What Are the Fundamentals and Benefits of Choosing between Liquid and Powder Coating?
Metal fabricators aiming to venture into finishing processes should familiarize themselves with two prevalent options—liquid and powder coating—along with the prerequisites necessary for a company seeking to employ either or both.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industry demands, the laser industry and technology are shifting their focus towards meeting the requirements of 5G semiconductors and smart vehicle processes. While Taiwan's laser industry has a well-established foundation built over the years, sustaining international competitiveness necessitates a proactive advancement in independent laser technology.
Headline
Knowledge
What is the Purpose of Surface Treatment for Metals?
Defects are bound to arise during the reprocessing of mechanical equipment or parts related to metal. As a result, the final item's surface treatment process plays a crucial role, serving the dual purpose of enhancing aesthetics and providing protection. This process not only improves the performance of metal parts but also helps prevent rust.
Headline
Knowledge
Selecting a Hydraulic Press and Understanding its Manufacturing Procedure
Hydraulic presses find applications in compaction, assembly, pressing, forming, embossing, and stretching. They play a crucial role in compaction within the cosmetics sector, assembly in the automotive industry, molding of electronic products, and stamping in the home appliance industry.
Headline
Knowledge
Introduction to RFID Tags: The Significance of RFID in Modern Retail Supply Chains
There are two types of RFID systems: passive and active. For those unfamiliar with RFID, you may be curious about the distinctions between these types and which one suits your application best. In the following, we offer a brief explanation.
Headline
Knowledge
Anticipating the Emerging Trends in the Global Laser Industry
In light of the evolving global industrial demands, the laser industry and technology are shifting towards meeting the requirements of 5G semiconductors and advanced processes for smart vehicles. While Taiwan's laser industry has made substantial progress over the years, maintaining alignment with international advancements necessitates a proactive push in independent laser technology.
Headline
Knowledge
Exploring Sheet Metal: Defining Sheet Metal and its Various Applications, with a Focus on Laser Applications
The term originates from English, known as plate metal. Typically, certain metal sheets undergo plastic deformation either manually or through die-stamping to attain the desired shape and size. These sheets can then undergo additional shaping through welding or a limited amount of mechanical processing to create more intricate components.
Agree