What Is the Cryogenic Treatment Process?
Knowledge

What Is the Cryogenic Treatment Process?

Low-temperature treatment is a sub-zero process, which is carried out immediately after quenching and is carried out by continuous tempering. The ultra-cold treatment has a significant improvement in the wear strength of the workpiece and has a breakthrough benefit for the stability of the mold size.
Published: May 05, 2021
What Is the Cryogenic Treatment Process?

With the continuous development and innovation of the machinery industry, the requirements for the precision of metal materials are getting higher and higher. How to improve the mechanical properties and service life of metal workpieces is a technology that the manufacturing industry wants to breakthrough. After the heat treatment process, the hardness and mechanical properties of the steel are greatly improved, but after the heat treatment, the following problems are still encountered:

  1. Residual Austenite. The ratio is about 10%-20%. Because Austenite is very unstable, it is easy to transform into Martensitic when subjected to external force or environmental temperature changes, which will cause irregular expansion of the material and reduce the dimensional accuracy of the workpiece.
  2. The structure has coarse grains, and the material carbides are solid solution and supersaturated.
  3. Residual internal stress. The residual internal stress after heat treatment will reduce the fatigue strength and other mechanical properties of the material, and easily lead to deformation of the workpiece during the stress release process.

And through the application of cryogenic and ultra-cryogenic treatment technology, it will be improved.

What is the cryogenic treatment?


Low temperature treatment is a metal treatment that enhances and enhances the mechanical properties of metal materials by using low temperature. Placing the workpiece at a temperature below -190°C can improve properties such as wear resistance and stability.

Cryogenic treatment is a post-heat treatment process that treats the metal at -100°C so that almost all the soft residual Austenite is converted into high-strength Martensitic, and can reduce surface looseness and surface roughness. When this process is completed, it will not only the surface can almost increase the strength, wear resistance, toughness, and other performance indicators of the entire metal, so that the molds and tools will still have high wear resistance and high strength after several refurbishments, and the life will be doubled. increase. The service life of knife and scissors products that have not undergone cryogenic treatment will be significantly reduced after refurbishment. Cryogenic treatment is not only applied to knife and scissors products, but also can be applied to the molds for making knife and scissors products, and can also significantly increase the life of the mold.

Principles of cryogenic treatment technology

  1. Eliminate retained austenite:
    Generally, the residual Austenite after quenching and tempering is about 8-20%. The residual Austenite will be further Martensitic over time. During the Martensitic transformation process, it will cause volume expansion, which will affect the dimensional accuracy and make the lattice interior the increase in stress seriously affects the performance of the metal. Cryogenic treatment can generally reduce the residual Austenite to less than 2% and eliminate the influence of the residual Austenite. If there is more residual Austenite, the strength will be reduced. Under the action of cyclic stress, it is easy to fatigue and falls off, causing nearby carbide particles to hang in the air, and quickly fall off with the matrix to produce spalling pits, forming a relatively rough surface.
  2. Fill the internal gaps to increase the metal surface area, namely the wear-resistant surface:
    Cryogenic treatment enables Martensitic to fill the internal voids, make the metal surface denser, increase the wear-resistant area, smaller crystals, increase the depth of the quenching layer, increase the number of renovations, increase the stability, and increase the life of materials and objects.
  3. Precipitation of carbide particles:
    Cryogenic treatment not only reduces the residual Martensitic but also precipitates carbide particles. The shrinkage of martensite during the cryogenic process forces the reduction of the crystal lattice and drives the precipitation of carbon atoms. Moreover, because the diffusion of carbon atoms is difficult at low temperatures, the size of the carbides formed is up to Nanometer level and attached to the Martensitic twin belt, increase the hardness and toughness. Cryogenic treatment can transform most of the residual Austenite into Martensitic, and precipitate carbide particles in Martensitic, accompanied by the refinement of the matrix structure.
  4. Reduce residual stress
  5. Make the metal matrix more stable
  6. Increase the strength and toughness of metal materials
  7. Increase the metal hardness by about HRC1~2
  8. Increased redness

Cryogenic process: Cryogenic treatment is carried out in three stages: cooling, heat preservation, and heating.

  1. Cooling stage
    The purpose of slow cooling is to eliminate residual stress. Because in the process of quenching and tempering, residual stress will be generated in the metal matrix. In the process of residual Austenite transforming to Martensitic, the volume expansion will also increase the residual stress. Only by slow cooling can the increase in residual stress be offset. And eliminate residual stress. The residual stress in the matrix is generally ignored, but it is the residual stress in the matrix that causes defects such as cracks in the knife and scissors products. The rapid cooling will increase the residual stress.
  2. Insulation stage
    The purpose of heat preservation is to make all the residual Austenite in the matrix turn into Martensitic as much as possible, and produce as many carbide particles as possible, because the process of residual Austenite to Martensitic is a slow process, and the length of the heat preservation time will affect the residual austenite. The amount of the transformation of the intensification and the life after deep cooling is mainly determined by the length of the holding time. Normally, the performance of holding for 2 to 4 hours has been improved, but if it is a high-quality product, you need to use 24 For the holding time of more than hours, the life-span improvement multiple is directly related to the length of the holding time.
  3. Heating stage
    The main purpose of the slow heat process is to prevent the generation of residual stress.

The best time for cryogenic treatment

It is generally believed that cryogenic treatment should have the best effect within two hours of quenching the workpiece, because the residual Austenite will gradually transform to Martensitic over time, and the transformed Martensitic will solidify, thereby reducing the ability to precipitate carbides.

Factors affecting the cryogenic effect:

  • The same cryogenic treatment process has different effects due to different materials
  • The same cryogenic treatment process has different effects due to different workpiece shapes
  • The lower the temperature, the better the effect
  • The longer the time, the better the effect
  • After cryogenic treatment, the corrosion resistance of the material is improved
Application of cryogenic treatment technology:

Cryogenic treatment can increase the wear resistance of tools and molds, and the cryogenic treatment process is applied to molds, knives, scissors, and measuring tools. Many professional cryogenic treatment plants use ready-made processes to perform cryogenic treatment for customers to improve the quality of their products.

Published by May 05, 2021 Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Headline
Knowledge
Is Your Paper Box Truly Recyclable? The Secrets of Composite Packaging
Imagine a typical morning, a warm drink in your hands, held in what looks like an eco-friendly paper cup. You think to yourself, "At least it's not plastic. It must be better for the environment." But have you ever wondered how that paper container holds a hot liquid without leaking? Can it really be recycled with ease? The truth is, there are hidden secrets about packaging materials you may not know.
Agree