What are a Reamer and its Function?
Knowledge

What are a Reamer and its Function?

Reamers are rotary tools with one or more teeth, used to remove a thin layer of metal from the surface of a machined hole. These rotary finishing tools are used for adding a desired finish to the inside of predrilled holes.
Published: Apr 19, 2022
What are a Reamer and its Function?

What is a Reamer?

A reamer is a cutting tool used for machining, designed to slightly enlarge the size of a drilled hole, but with high precision, ensuring a smooth surface finish on the inside of the hole. Reamers are the most accurate hole-making tools currently available, and are usually used to meet the high H6/H7 tolerances required by ISO standards. Both ISO and ANSI metric standards refer to standards that apply to fasteners that can be freely assembled and disassembled. When properly used, a reaming tool can ream thousands of holes to high-precision without compromising performance.

There are many types of reamers, including machining tool reamers and hand reamers. High-precision mechanical reamers are often used in lathes or machining centers. A reamer is a precision tool, and its precision depends on the machine, the operator's ability to operate the machine, and the functional characteristics of the tool itself. Reamers can be produced from carbide, high-speed steel, or metal-ceramic composites.

The Purpose of the Reamer:

A reamer has one or more teeth which remove a thin layer of metal from the machined surface of a hole. The reamer is used, mainly to improve the machining accuracy of the hole and reduce the roughness of its surface. Hand reaming is often used to finish dowel holes or pinholes to allow an interference fit between the hole and the dowel. Reamers can only remove a very small amount of material, usually only about .005 to 0.008 inches, so are ideal for producing a high-quality finishes on hole surfaces.

Although reamers are more commonly used for machining cylindrical holes, a tapered reamer can be used to machine a tapered hole; but this is quite rare. Hand reamers and machine reamers are both common and can both be used for straight shank reaming and taper shank reaming.

Operation of the Reamer:

As a reamer only removes a thin layer of material from the surface of a machined hole, it cannot be used to remove large amounts of material. The amount of material removed depends on several factors, including the material to be machined and the size and quality of the pre-drilled holes. For mechanics, this is a process that requires careful balancing. For the reamer to work efficiently, it is critical to have the correct allowance in the hole. Too much allowance and the reamer may struggle to run and the hole may be deformed. Too little allowance and the reamer will rub and wear, resulting in poor hole quality. The cutting edge of the reamer needs to have a certain hardness to prolong the service life; it also needs to have good toughness so that the tool will not fail during normal use. Proper use requires the careful selection of the proper tool for the material being machined, and close control of the allowance to ensure long reamer life and a high-quality hole finish.

Also, if the workpiece is not held securely when reaming, chattering can result, the finish of the part will be poor and the cutting edge will become dull. Friction and extreme heat can also cause problems during reaming, which means that effective lubrication is essential not only to cool the tool but also to extend the life of the reamer. Lubrication also increases cutting speeds, reduces cycle times, and removes chips, helping to improve the finish of the workpiece.

Types of Reamers:

  • Reamers are divided into hand reamers and machine reamers according to the way they are used.
  • Reamers can be either cylindrical reamers or conical reamers, depending on the shape of the hole being reamed.
  • According to the direction of the chip groove, reamers can be either straight groove and spiral groove.
  • Reamers can have either straight shanks or tapered shanks.
  • Reamers can be made of high-speed steel or have cemented carbide inserts.
Reamers can have various numbers of teeth and tooth slots:

The number of teeth of the reamer affects the reaming accuracy, surface roughness, chip space, and tooth strength. Its value is generally determined according to the diameter of the reamer and the material of the workpiece. When the diameter of the reamer is larger, a larger number of teeth can be selected. When machining ductile materials, the number of teeth should be smaller. When processing brittle materials, a larger number of teeth is preferable. To facilitate the measurement of the diameter of the reamer, the number of teeth should be an even number. For holes ranging in diameter from 8~40mm, the number of teeth is generally 4~8.

Design Points - Reamer Diameters and Tolerances

The diameter tolerance of the reamer directly affects the dimensional accuracy of the machined hole, the manufacturing cost, and the service life of the reamer. When reaming, due to the radial runout of the cutter teeth, the amount of reaming, and the cutting fluid, the aperture will be larger than the diameter of the reamer. This phenomenon is called reaming expansion. At the same time, because the blunt radius of the blade squeezes the hole wall, the hole will recover and shrink. This effect is called reaming shrinkage. Reaming with a high-speed steel reamer generally results in explanation, while reaming with a carbide reamer generally results in shrinkage. This shrinkage that results is usually is greater when reaming thin-walled holes. The nominal diameter of the reamer is equal to the nominal diameter of the hole. By understanding the effects of expansion and contraction, and allowing for the necessary wear tolerance, the upper and lower deviation of the reamer can be determined.

Published by Apr 19, 2022 Source :kknews, Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree