What Is the Working Principle of Wire Electrical Discharge Machining?
Knowledge

What Is the Working Principle of Wire Electrical Discharge Machining?

Industrial manufacturing requires machining tolerances. EDM machine can cut metal through electric current.
Published: Jul 28, 2023
What Is the Working Principle of Wire Electrical Discharge Machining?

EDM - An Abbreviation for Electrical Discharge Machining

In the early days, it was difficult to manufacture parts with fine shapes and tight tolerances using conventional machining techniques, but nowadays, parts with tight tolerances can be achieved by the electric discharge cutting process using wire cutting. The precise cutting of metal through a blade that is no thicker than a human hair is the processing technology that wire sparks can do.

EDM stands for electrical discharge machining, in other words using charged filaments to remove tiny particles and further cutting to form parts. The conductive filament carries the charge on one side and the material on the other side. When the two are close, the electric current is generated by the electric current to melt the gap. The dielectric liquid separates the two electrodes and applies a voltage to produce a periodically varying current discharge to process the material. The advantage of EDM is that it can cut hardened materials and exotic alloys while also providing excellent surface finishes as a bonus. The result is often a reduced need for post-processing or surface treatment.

The working principle of Wire Electrical Discharge Machining (EDM) involves the use of electrical sparks to remove material from a workpiece. It is a non-conventional machining process used to shape hard materials that are challenging to machine using traditional methods.

How Does A Wire Electrical Discharge Machining (EDM) Work?

Workpiece and Wire: In Wire EDM, a thin, electrically conductive wire is used as an electrode, and it is typically made of brass or copper. The workpiece, which is the material to be machined, is also electrically conductive.

Spark Generation: The wire electrode is guided precisely close to the workpiece's surface, but it does not make physical contact. An electrical voltage is applied between the wire and the workpiece, creating a potential difference.

Dielectric Fluid: Both the wire and the workpiece are submerged in a dielectric fluid (often deionized water) to facilitate the machining process. The dielectric fluid acts as an electrical insulator, preventing the spark from occurring before the desired location is reached.

Material Removal: When the voltage is applied, electrical discharges occur between the wire and the workpiece at specific locations. These electrical discharges create intense heat, which melts and vaporizes a tiny portion of the workpiece material.

Material Flushing: The vaporized material, along with the debris created during the process, is flushed away by the continuous flow of dielectric fluid, leaving a narrow and precise cut in the workpiece.

Wire Advancement: As the material is removed, the wire is continuously fed from a spool to ensure a fresh, un-worn portion of the wire is used for machining.

Controlled Paths: To create the desired shape on the workpiece, the wire follows a pre-programmed path, guided by CNC (Computer Numerical Control) technology.

Accuracy and Precision: Wire EDM is known for its high accuracy and precision, making it suitable for intricate and delicate machining operations.

The Wire EDM process continues until the desired shape is achieved on the workpiece. It is widely used in various industries, including aerospace, automotive, electronics, and medical, where intricate and precise components are required.

Published by Jul 28, 2023 Source :Youtube

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree