What is Carbon Fiber Molding Process?
Knowledge

What is Carbon Fiber Molding Process?

Carbon fiber composite materials need to be processed using a molding process from prepreg to the final part. With the development of carbon fiber technology, the molding process of carbon fiber composite materials is also constantly improving. However, various molding processes of carbon fiber composite materials do not exist in the way of updating and eliminating, and often a variety of processes coexist to achieve the best effect under different conditions and different situations.
Published: Nov 02, 2022
What is Carbon Fiber Molding Process?

What is the Carbon Fiber Forming Process?

  • Injection molding process:
    It belongs to a type of low-pressure molding in the hand lay-up process. After mixing chopped fiber and resin with a spray gun, compressed air is sprayed on the mold, and after reaching a predetermined thickness, it is manually pressed with a rubber roller, and then cured and formed. A semi-mechanized molding process created to improve hand lay-up molding has a certain degree of improvement in work efficiency, but it still cannot meet mass production. It is used to manufacture the transition layer of automobile bodies, hulls, bathtubs, and storage tanks.
  • Winding molding:
    The process of winding continuous fibers or cloth tapes impregnated with resin glue on a core mold according to a certain rule, and then curing and demolding into composite products. Carbon fiber winding molding can give full play to its characteristics of high specific strength, high specific modulus, and low density.
  • Liquid molding:
    The liquid monomer is synthesized into a high molecular polymer, and then the process of curing the polymer into a composite material is changed to be completed directly in the mold at one time, which not only reduces the energy consumption in the process but also shortens the molding cycle. However, the application of this process must be based on precise pipeline transportation and metering, as well as automatic temperature and pressure control. Liquid molding mainly includes the RTM molding process, RFI molding, and VARI molding. The main advantages of the resin film infiltration (RFI) molding process are that the mold is simpler than the RTM process mold. The resin flows along the thickness direction, it is easier to infiltrate the fibers, there is no prepreg, and the cost is lower. However, the dimensional accuracy and surface quality of the obtained products are not as good as those of the RTM process, the void content is higher, and the efficiency is slightly lower, which is suitable to produce parts with large planes or simple curved surfaces. The advantages of the vacuum-assisted forming process (VARI) are a high utilization rate of raw materials, less trimming and processing, no need for prepregs, and low cost. It is suitable to produce large-scale panel structural parts at room temperature or low temperature. But the disadvantages are similar to the RFI molding process.
  • Resin Transfer Molding (RTM):
    Resin Transfer Molding (RTM) technology is a low-cost method of manufacturing composite materials that were initially primarily used for aircraft secondary load-bearing structures such as doors and inspection hatches. In 1996, the US Defense Advance Research Agency carried out research on low-cost RTM manufacturing technology of high-strength main bearing components. RTM technology has the advantages of high efficiency, low cost, good quality of parts, high dimensional accuracy, and little impact on the environment. It can be applied to the molding of composite parts with large volumes, complex structures, and high strength. One of the most active research directions in the field of material processing.
  • Compression molding:
    The carbon fiber prepreg is placed between the upper and lower molds, and the mold is placed on the hydroforming table. After a certain period of high temperature and high pressure to solidify the resin, the carbon fiber product is removed. This molding technology has the advantages of high efficiency, good product quality, high dimensional accuracy, and less environmental impact, and is suitable for the molding of mass and high-strength composite parts. Mold manufacturing is complex, the investment is high, and the size of the parts is limited by the size of the press.
  • Injection molding:
    This is a new technology, bole CIML equipment integrates the traditional multi-step process into a one-step process, which shortens the process flow. The fiber length is better preserved to achieve the purpose of energy-saving and high-efficiency production. By overcoming a series of key technical problems such as formula optimization, compounding system, intelligent control system, and molding process parameter optimization in material-equipment-manufacturing, it fully meets the requirements of vehicle light weighting in terms of product strength, cost, and efficiency. A weapon tailored for lightweight automobiles.
  • Hand lay-up--wet lay-up method:
    Apply mold release agent and gel coat on the working surface of the mold, lay the cut carbon fiber prepreg on the working surface of the mold, brush or spray the resin system glue, and after reaching the required thickness, form, solidify, and demold. With highly developed preparation technology, the hand lay-up process is still simple in process and low in investment. The advantages of wide application and other advantages are widely used in many fields such as petrochemical containers, storage tanks, and automobile shells. The disadvantage is that the texture is loose, the density is low, the product strength is not high, and it mainly depends on labor, the quality is unstable, and the production efficiency is low.
  • Vacuum autoclave:
    The composite material blank formed by laying up a single layer of prepreg material in a predetermined direction is placed in an autoclave, and the curing process is completed under a certain temperature and pressure. An autoclave is a special pressure vessel that can withstand and regulate a certain temperature and pressure range. The blank is laid on the surface of the mold with a release agent, then covered with porous release cloth (film), absorbent felt, and the air felt in sequence, sealed in a vacuum bag, and then placed in an autoclave. Before heating and curing, vacuum the bag to remove air and volatiles, and then heat up, pressurize and cure according to the curing system of different resins. The formulation and implementation of the curing system are the keys to ensuring the quality of autoclaved parts.
  • Vacuum import (VIP):
    Lay carbon fiber composite material on the mold, then lay a vacuum bag, and draw out the vacuum in the system to form a negative pressure in the mold cavity. And use the pressure generated by the vacuum to press the unsaturated resin into the fiber layer through the pre-laid pipeline, let the resin infiltrate the reinforcing material, and finally fill the entire mold. After the product is cured, remove the vacuum bag material, and obtain the desired product from the mold. When resin infiltrates carbon fiber in a vacuum environment, there are very few bubbles generated in the product. The product has higher strength, lighter weight, stable product quality, and reduces the loss of resin, and only one side of the mold can be used to obtain smooth and flat products on both sides. Can better control product thickness. In rudders and radar shields in the marine industry, blades and cabin covers in wind power energy, and various types of roofs, windshields, and carriages in the automotive industry.
  • 3iTech induction heating:
    A new type of induction heating process that integrates an inductor into the mold. Which can process carbon fibers at a temperature of 20°C-400°C, and heats the surface of the mold with an inductor integrated inside the mold through heat conduction. The use of electromagnetic induction can rapidly heat the mold and can control the local temperature well. The advantage is a significant reduction in cycle time and component cost. The technology is currently not suitable for large components, and the relevant production volume must be large enough.
  • Lamination molding:
    The layer-by-layer prepreg is placed between the upper and lower flat molds for pressure heating and curing. This process can directly inherit the production methods and equipment of wood plywood, and improve and perfect it according to the rheological properties of the resin. The lamination molding process is mainly used to produce composite sheets of various specifications and uses. It has the characteristics of a high degree of mechanization and automation, and stable product quality, but the one-time investment in equipment is large.
  • Pultrusion:
    Under the action of traction, the continuous carbon fiber tow, belt, or cloth impregnated with resin glue is formed and cured by extrusion die to continuously produce profiles of unlimited length. Pultrusion is a special process in the composite material forming process. Its advantages are that the production process can be fully automated and controlled, and the production efficiency is high. The fiber mass fraction in pultruded products can be as high as 80%. The dipping is carried out under tension, which can give full play to the role of reinforcing materials. The product has high strength. The longitudinal and transverse strength of the finished product can be adjusted arbitrarily, which can meet the different mechanical properties of the product. Require. This process is suitable for producing profiles with various cross-sectional shapes, such as I-shaped, angle-shaped, groove-shaped, and special-shaped section pipes, and combined section profiles composed of the above-mentioned sections.

The Difference Between Dry Forming and Wet Forming of Carbon Fiber

In the production field of carbon fiber products, there are dry carbon fibers and wet carbon fibers. The distinction is expressed in the production process of carbon fiber products. The two most used methods for processing carbon fiber composites are prepreg autoclave forming mode and vacuum introduction mode.

There are obvious differences in the performance of the products produced by the two processes. The wet process is prone to deformation during processing and the truncation part is prone to de-filamentation. The resin and fiber have poor bonding properties and are prone to oxidative discoloration due to contact with air. The dry prepreg process does not have the above situation, but it is prone to performance degradation under UV irradiation. The carbon fiber products produced by these two production methods are significantly different in weight and hardness. Carbon fiber products refer to the use of carbon fiber prepregs as raw materials, which are processed into material products that can meet the requirements of users through different processing methods.

Carbon fiber parts are lighter than metal aluminum, but stronger than steel, and have the characteristics of corrosion resistance and high modulus. They are important materials in national defense, military industry, and civilian use. It not only has the inherent intrinsic properties of carbon materials but also has the soft processability of textile fibers. It is a new generation of reinforcing fibers. Compared with dry carbon fiber, the carbon fiber pattern of wet carbon fiber will be deformed when vacuuming, and carbon fiber filaments will also be seen in its cross-section, while dry carbon fiber products will not.

The carbon fiber products made by the dry process have good hardness and are easy to be processed by CNC, but the production cycle is long and it is not easy to mass-produce, and the production cost is high. Carbon fiber products refer to the use of carbon fiber prepregs as raw materials, which are processed into material products that can meet the requirements of users through different processing methods. The cost of wet molding products is low, the production process is relatively simple, and the production efficiency of the process is high. In the current production of carbon fiber, dry forming is used in the case of high precision and high-quality requirements, and wet forming is used in appearance parts and mass production.

Published by Nov 02, 2022 Source :read, Source :read

Further reading

You might also be interested in ...

Headline
Knowledge
Essential for Precision Machining: A Complete Guide to Tungsten Carbide Center Drills
In modern manufacturing, precision is the core standard by which product quality and performance are measured. From aerospace components to medical devices, even a minor deviation can lead to serious consequences. When it comes to precision drilling, a critical challenge is ensuring that a drill bit can be accurately positioned at the start of a cut while maintaining stability during high-intensity operations. The tungsten carbide center drill is the professional tool engineered specifically to solve this problem.
Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Agree