Sawing Technology Drives the Development of Precision Machining
Knowledge

Sawing Technology Drives the Development of Precision Machining

Modern manufacturing is developing in the direction of high efficiency, high precision, and economy. Band saws are the most efficient tools for the primary processing of metal and non-metal materials.
Published: Jun 06, 2022
Sawing Technology Drives the Development of Precision Machining

What is a Hacksaw?

A hacksaw is mainly used for sawing metal materials, but also for sawing small pieces of wood, plastic products, etc., and sometimes for cutting cables and wires. Common hacksaw frames are available in two types: adjustable length and fixed length, and are made of steel plates or steel pipes.

A hand hacksaw is a common tool for fitters, which can cut small-sized round steel, angle steel, flat steel, and workpiece. The hacksaw consists of a saw frame and a saw blade. When using the saw blade, install the saw blade on the saw frame. Generally, install the saw blade with the tips of the teeth facing forward. However, if you find that it is easier to draw the teeth during use, install with the tips of the teeth facing toward you. This will prolong the service life of the saw blade. After the hacksaw is used, the saw blade should be removed or the tension nut should be loosened, to prevent the saw frame from being deformed. Blades commonly have from 18 to 32 teeth per inch. Courser blades that have less teeth per inch are used for cutting softer or courser materials, while finer blades with more teeth per inch are used for cutting finer and harder materials.

What is a Power Hacksaw?

A chainsaw is a cutting tool that uses electricity as a power to cut wood, stone, steel, etc., and has sharp teeth on the edge. Divided into fixed and portable, saw blades are generally made of steel, with round, bar, and chain types.

Types of Power Hacksaw and Their Selection Point

A power hacksaw is commonly used by lumberjacks, with teeth designed to be attached to a chain to facilitate cutting wood. It usually judges the scale suitable for the operation according to the length of the chain plate, which can be mainly divided into small, medium, and large.

  1. Small Power Hacksaw: For light work
    Products with a chain plate length of fewer than 8 inches (25cm) are small chainsaws suitable for gardening work such as trimming branches and leaves. It is usually divided into two types: plug-in type and rechargeable type, which can be freely selected according to the situation of the job site. Also, due to its small size and easy handling, it is a good entry-level option.
  2. Medium Power Hacksaw: The Most Versatile
    The length of the chain plate of the medium-sized chainsaw falls between 8 to 14 inches (25 to 40 cm). Due to the full power and the choice of power supply methods, consumers can easily find the type that matches the purpose. For example, when it is necessary to control the air volume and sound volume for gardening work, you can choose the electric model; and in the mountains and outdoor work where it is difficult to ensure the power supply, you can choose the engine model.
  3. Large Power Hacksaw: For Large Job Sites
    A large chainsaw is a model with a chain plate longer than 14 inches (40 cm). Most of them have powerful horsepower, and their power type is mainly engines, so they can cut items that are difficult for medium and small machines such as thick trees, and can greatly improve work efficiency in difficult job sites such as logging. However, the operation of large chainsaws is very difficult, and the chainsaw itself has certain dangers. Based on safety considerations, it must be operated by professionals.

Market Overview of Sawing Technology:

Precision manufacturing has become an irreversible trend in global machining. Not only do consumer electronics products have this demand, but industry, aerospace, construction, transportation, and equipment manufacturers are also moving towards more sophisticated manufacturing. On the other hand, the components and materials involved in precision machining are more diverse than in the past, such as more powerful composite materials, which not only need to achieve higher precision but also the performance and output are the items that the industry cares about. Therefore, how to meet the needs of the industry and break through this challenge, the improvement of processing technology is a key link.

With the diversification of materials being sawn, and the demand for high-speed sawing, the demand for tungsten carbide saw blades has also increased in recent years. Tungsten steel and carbon particles are welded together with a base metal to form the blade. Tungsten carbide band saw belts can achieve more than twice the cutting speed of ordinary saw belts and produce a smoother sawing surfaces. They cost more than three times what bimetal saw belts cost, but the sawing life can be expected to be much longer than this. Because tungsten steel is very hard and brittle, vibration of the band saw machine during sawing can seriously affect the sawing life of the tungsten steel blade.

What are the Application Fields for Hacksaws?

Nowadays, to meet the requirements of high-speed sawing, new technologies are being incorporated in the surface coating of saw belts, and sine wave feeding mechanisms, with intelligent feeding and monitoring technology have been successively applied to the new generation of band saws.

Band sawing applications include steel structures, bridges, construction, equipment manufacturing, machining, precision technology, automobile manufacturing, air transportation manufacturing, marine shipping manufacturing, petrochemical equipment, mold manufacturing, and wind power generation.

Recently, due to the demand for many composite materials in the aerospace and automotive industries to achieve the purpose of energy-saving and environmental protection, the demand for precision cutting of composite materials (such as honeycomb, glass fiber, and carbon fiber composite materials) is also increasing. The annual output value of the sawing machine industry can reach billions of Taiwan dollars.

Global Sawing Machine Development Trends: High Speed and Intelligence

The world's major producers of bimetal band saw blades are Europe, the United States, Japan, and Germany. At present, the bimetallic band saw blade market is mature and stable, and the growth in demand mainly comes from emerging economies such as China and India. In recent years, due to the increasing demand for high-speed and difficult-to-cut materials, the selection of cutting conditions depends on experience, and the use of improper cutting conditions will reduce the production rate and increase the wear and tear of the saw band. Optimizing the cutting conditions to increase the cutting rate and prolong the service life of the saw blade is an important way to reduce cutting costs and improve efficiency. Therefore, the development of high-speed and intelligent sawing machines is the current global development trend.

In recent years, the development of intelligent band saw machines has also become increasingly competitive. From understanding the sawing conditions, to the monitoring and troubleshooting of the machine, new intelligent developments are improving the performance of band saw machine tools, but a major problem bandsaw still face is the processing of the blades. Because the saw belt itself has a long tool path with few support points, measurement of sawing conditions is difficult. So, although the band saw machine itself is not as high priced as that of general tools, the unstable conditions under which the belts operate create challenges in the design of belts. Therefore, developing effective, cheap, and reliable blades is a present focus of bandsaw blade development.

Because high-speed band sawing increases the risk of the vibration of the saw belt during cutting, it will increase the load loss of the tool. The design must be simplified to achieve a higher degree of shock resistance, strengthen the effective support of the tool, and increase the rigidity of the saw bow. Due to the wide variety of materials sawn by the band saw machine, it is necessary to select the corresponding saw band for different sawing materials and sawing conditions and adjust to the appropriate sawing conditions. Traditionally, operators with experience will know whether a cut is normal not, however, operators without deep experience can use the saw under conditions that can reduce the life of the saw belt, so an intelligent system is highly beneficial. When cutting conditions are optimized, the life of the saw belt is extended, high-efficiency sawing is achieved, and labor and costs are reduced.

Protective Coating Technology is Indispensable

Because the band saw operates under continuous cutting, the design of the cutting teeth on the saw belt is critical to performance. The research and development of special tooth profiles can assure that the cutting force on each tooth is equal and consistent, which is a key to achieving high efficiency and long saw belt life. Protective coating technology can also reduce sawing resistance and protect the geometry of the saw teeth. However, this technology is being newly developed and there are not many saw blades with protective coatings at present.

Published by Jun 06, 2022 Source :kknews, Source :hope

Further reading

You might also be interested in ...

Headline
Knowledge
Choosing the Right Spray Gun: The Key to Moving from "Usable" to "Exceptional"
From the early cast-iron spray guns to modern carbide and ceramic materials, the durability of spray guns has made a monumental leap. These historical examples show that upgrading materials can increase durability by dozens of times. Modern material technology further highlights this trend: under the same working conditions, reports indicate that the lifespan of a steel spray gun is far shorter than that of a tungsten carbide gun, which in turn is not as durable as a ceramic spray gun. This makes the choice of material for this critical industrial component a determining factor in production efficiency and cost control.
Headline
Knowledge
Silicon Wafer Cutting Machines: The Core Engine of Solar Panel Manufacturing
In the solar panel manufacturing industry, the silicon wafer cutting machine (Wire Saw) forms the foundation of the entire production process and stands as the key equipment determining both product yield and cost. From slicing monocrystalline or polycrystalline silicon ingots to shaping the wafers used in photovoltaic modules, the quality of each wafer directly impacts the efficiency and durability of solar panels.
Headline
Knowledge
Driving the Future of Manufacturing with High-Performance Materials: Advanced Composites and Aluminum Alloys
In modern manufacturing, materials science has become a critical factor in industrial competitiveness. The widespread adoption of advanced composites and aluminum alloys has not only transformed the design of high-performance sport engines but also propelled technological advancements in the automotive, aerospace, and high-performance industrial equipment sectors. These two material categories, due to their unique properties, demonstrate significant trends and value across diverse manufacturing applications.
Headline
Knowledge
How to Choose a CNC Machine Tool: A Practical Guide on Workpiece Size, Axis Configuration, and Precision
Choosing the right CNC machine tool is essential for efficient and precise manufacturing. Instead of focusing on price or brand alone, consider your machining needs, including workpiece size, complexity, material, and automation requirements. This guide helps you select the ideal CNC machine for your production goals.
Headline
Knowledge
The Hidden Power Behind Stable Robot Operation: Structural Components
Imagine walking into your kitchen in the morning and seeing the robotic arm of an automatic coffee machine steadily grasping your cup, or observing a robot arm in a warehouse rapidly and precisely moving boxes. Behind these smooth movements, it is not just motors or programming at work; structural components quietly provide critical support. Frames, brackets, and housings do more than maintain the skeleton—they carry high-precision gears and bearings, distribute motion loads, protect internal systems, and ultimately allow the robot to move as naturally and steadily as a human hand.
Headline
Knowledge
The Hidden Secret Behind a Robot’s Smooth Rotation: The Precision Craft of Gears and Bearings
In industrial automation and smart manufacturing, the ability of robotic arms to rotate as fluidly as a human wrist is not the result of a single component, but rather the synergy of two critical “invisible parts”: gears and bearings. Together, they form the core of robotic joints, ensuring every motion is both precise and smooth. These components, however, are not simply shaped from raw steel; they are the outcome of multiple sophisticated processes—CNC machining, heat treatment, and precision grinding—to meet the highest standards of accuracy and durability.
Headline
Knowledge
The Secret Behind Fuel Efficiency: How CNC Machines Maximize Every Drop of Fuel
When we lightly press the accelerator and enjoy a smooth drive, there’s an invisible hero quietly at work behind the scenes: the CNC machine crafting every precise engine component. For consumers, fuel-efficient cars are often the top choice. For manufacturers, fuel efficiency is a critical factor that defines product competitiveness. Yet few realize that the journey toward efficiency doesn’t start at the gas pump—it begins with the machines that shape every micron of the engine. CNC machines are the unsung heroes making it all possible.
Headline
Knowledge
Redefining Makeup Removal: Evolving from Traditional Nonwovens to Medical-Grade Standards
As skincare routines become increasingly refined, makeup removal products are no longer secondary tools used solely for eliminating cosmetics. Instead, they have become the first line of defense for skin health, anti-irritation performance, and the sensory experience of daily rituals. The material composition and structural engineering of removal substrates—such as cotton pads, cleansing cloths, and wipes—are undergoing continuous optimization. The industry is shifting from simple absorbent functions toward advanced development that combines low friction, minimal residue, enhanced skin compatibility, and environmental sustainability.
Headline
Knowledge
The Superpower of PCBs: Unveiling the Magic of Heat Dissipation
Every PCB is like a bustling miniature city: the electric current flows like nonstop traffic, and the electronic components are the lively citizens. When “traffic jams” occur, heat builds up quickly. Without proper thermal design, LEDs, CPUs, and power transistors can “overheat” and fail. A PCB isn’t just a circuit-connecting board—it also acts as the city’s “air-conditioning engineer.” Copper traces serve as high-speed distribution lanes, thermal vias function like air ducts, and the board material and metal backing work as invisible heat-dispelling magic. Combined with airflow management inside the enclosure, the PCB efficiently channels heat away, ensuring components perform reliably and quietly safeguarding the entire electronic system.
Headline
Knowledge
From Marine Polysaccharides to Pet Wellness: A New Milestone in Fucoidan Applications
In recent years, companion animals have come to occupy an increasingly significant role in human life—not merely as pets, but as integral members of the family. As pet owners place growing emphasis on animal health and longevity, the demand for functional health ingredients has surged. Among these, fucoidan, a marine-derived polysaccharide extracted from brown seaweed, has emerged as a key player in the field of pet nutritional science. Recognized for its immunomodulatory, antioxidant, and cellular repair properties, fucoidan is redefining the standards for preventive care and holistic wellness in companion animals.
Headline
Knowledge
Eco-Friendly Tableware and Food Safety: A Choice for Both the Environment and Health
With a global increase in plastic reduction and environmental awareness, a growing number of businesses and consumers are opting for eco-friendly tableware made from natural or biodegradable materials to replace traditional plastic items. Eco-friendly tableware—such as that made from bamboo fiber, sugarcane bagasse, leaf fiber, or PLA—typically does not contain harmful substances like plasticizers or BPA, thus reducing potential health risks. According to the European Union's Food Contact Materials Regulation (EC No. 1935/2004), "food contact articles shall not transfer their constituents to food in quantities that could endanger human health." However, when production processes or manufacturing technologies are inadequate, eco-friendly tableware can still pose food safety risks.
Headline
Knowledge
Food Cleanliness and Its Impact on the Human Body: A Farm-to-Table Guarantee
The cleanliness of food, defined as the hygienic state of food surfaces and production environments, is crucial for consumer health. The World Health Organization (WHO) reports that globally, approximately 600 million people fall ill each year from consuming contaminated food, leading to about 420,000 deaths.
Agree