What Exactly is A Planer?
Knowledge

What Exactly is A Planer?

In addition to the use of hand tools, the processing of metal workpieces is mainly achieved by the machine tools, such as lathes, planers, milling machines, grinders, boring machines, drilling machines, etc. These machines have different performances to match the job requirements. In recent years, various industrial advanced countries have used machines to replace manpower, making the application of machine tools more extensive and important. Although the processing precision of milling machines and grinding machines is superior to that of planers, the price is more expensive than that of planers. Generally, planers are still used for many initial processing jobs in small and medium-sized factories. So, what exactly is a planer?
Published: Aug 30, 2022
What Exactly is A Planer?

The Definition of a Planer

A planer is a linear motion machine tool that uses a planer to plan the plane, groove or forming surface of a workpiece. Using planer processing, the tool is simpler, but the productivity is low (except for processing long and narrow planes), so it is mainly used for single-piece, small batch production and machine repair workshops, and is often replaced by milling machines in mass production.

The Classification of Planers

There are many types and models of planers. According to its structural characteristics, it can be roughly divided into:

Shaper

The bull head planer is a planer used for planning medium and small workpieces, and the working length is generally not more than 1 m. The workpiece is clamped on the adjustable worktable or in the flat-nose pliers on the worktable, and the planning process is carried out by the linear reciprocating motion (cutting motion) of the planer and the intermittent movement (feeding motion) of the worktable.

According to the length of the workpiece that can be processed, the planer can be divided into three types: large, medium and small: the small planer can process workpieces with a length of less than 400mm, such as the B635-1 planer; the medium-sized planer can process the length of 400~600mm. The workpiece, such as the B650 type planer; the large-scale planer can process workpieces with a length of 400~1000mm, such as the B665 and B69O type planers.

Gantry Planer

It is a planer used to plan large workpieces. Some gantry planers can process workpieces with a length of tens of meters or even more than tens of meters. For example, the B2063 gantry planer has a worktable area of 6.3m×20m. Several planers can be clamped on the workbench at a time, and several planning knives can be used for planning at the same time, so the productivity is relatively high. The gantry planer uses the direct reciprocating motion (cutting) of the worktable and the intermittent movement (feeding motion) of the planer to carry out planning processing.

The gantry planer mainly processes large workpieces or multiple workpieces at the same time. Compared with the bull head planer, from the structural point of view, its shape is large, the structure is complex, and the rigidity is good. From the point of view of the machine tool movement, the main motion of the gantry planer is the linear reciprocating motion of the worktable, and the feed motion is the horizontal direction of the planer. Or vertical interval motion, which is the exact opposite of the motion of a planer. The gantry planer is driven by a DC motor, with stepless speed regulation and smooth movement. All tool holders of the planer can be translated horizontally and vertically. The gantry planer is mainly used to process large planes, especially long and narrow planes. Generally, the width of the workpiece that can be planed is 1 meter and the length is more than 3 meters. The main parameter of the gantry planer is the maximum planning width.

The tool holder on the beam of the gantry planer can perform lateral feed movement on the beam guide to plan the horizontal surface of the workpiece; the side tool holder on the column can perform vertical feed movement along the column guide to plan the vertical surface. The tool holder can also be deflected at an angle to plan bevels. The beam can be lifted up and down along the column guide to adjust the relative position of the tool and the workpiece. The gantry planer is mainly used to process planes or grooves on large parts, or to process multiple medium-sized parts at the same time, especially suitable for the processing of narrow and long planes. The workpieces on the gantry planer are generally pressed with platen bolts. On the gantry planer, there is a complex electrical equipment and routing system, and the movement of the worktable can be adjusted stepless. The company can manufacture and process various non-standard models of gantry planers, CNC floor boring and milling machines, heavy-duty horizontal milling machines, ordinary double-column vertical lathes, heavy-duty horizontal lathes, CNC fixed beam gantry boring and milling machines, and gantry moving beam boring machines according to customer requirements. Milling machine, precision gantry boring and milling machine, single-arm planer, single-arm planer and milling machine, the equipment configuration can be arbitrarily matched, and the planer head, milling head, grinding head and horizontal grinding head can be configured according to user needs.

Slotting Machine

Slotting machine, also known as vertical planer, is mainly used to machine the inner surface of the workpiece. Its structure is almost exactly the same as that of a bull head planer. The main difference is that the slotting tool of the slotting machine performs linear reciprocating motion (cutting motion) in the vertical direction. Do intermittent rotary feed motions on the circular room.

According to the different transmission modes, planers have two types: mechanical transmission and hydraulic transmission: planers, gantry planers and slotting machines with mechanical transmission; planers and slotting machines with hydraulic transmission.

Processing Characteristics of Planers

According to the cutting motion and specific processing requirements, the structure of the planer is simpler than that of the lathe and the milling machine, the price is lower, and the adjustment and the operation is also more convenient. The single-edged planer used is basically the same as the turning tool, with a simple shape and convenient manufacturing, sharpening and installation. The main motion of planning is reciprocating linear motion, and it is affected by inertial force when it is reversed. In addition, there is impact when the tool cuts in and out, which limits the increase of cutting speed. The length of the cutting edge that the single-edged planer actually participates in cutting is limited, and a surface often needs to be processed through multiple strokes, and the basic process time is long. When the planer returns to the stroke, no cutting is performed, and the processing is discontinuous, which increases the auxiliary time.

Therefore, planning is less productive than milling. However, for the machining of long and narrow surfaces (such as rails, long grooves, etc.), and for multi-piece or multi-cut machining on a planer, planning can be more productive than milling. The planning accuracy can reach IT9~IT8, and the surface roughness Ra value is 3.2 μm~1.6 μm. When using wide-blade fine planning, that is, on a gantry planer, a wide-blade fine planer is used to cut a very thin layer of metal from the surface of the part at a very low cutting speed, large feed rate and small cutting depth, due to the cutting force. Therefore, the surface roughness Ra value of the parts can reach 1.6 μm~0.4 μm, and the straightness can reach 0.02 mm/m. Wide-blade fine planning can replace scraping, which is an advanced and effective method of finishing flat surfaces.

Published by Aug 30, 2022 Source :kknews

Further reading

You might also be interested in ...

Headline
Knowledge
Silicon Wafer Cutting Machines: The Core Engine of Solar Panel Manufacturing
In the solar panel manufacturing industry, the silicon wafer cutting machine (Wire Saw) forms the foundation of the entire production process and stands as the key equipment determining both product yield and cost. From slicing monocrystalline or polycrystalline silicon ingots to shaping the wafers used in photovoltaic modules, the quality of each wafer directly impacts the efficiency and durability of solar panels.
Headline
Knowledge
Driving the Future of Manufacturing with High-Performance Materials: Advanced Composites and Aluminum Alloys
In modern manufacturing, materials science has become a critical factor in industrial competitiveness. The widespread adoption of advanced composites and aluminum alloys has not only transformed the design of high-performance sport engines but also propelled technological advancements in the automotive, aerospace, and high-performance industrial equipment sectors. These two material categories, due to their unique properties, demonstrate significant trends and value across diverse manufacturing applications.
Headline
Knowledge
How to Choose a CNC Machine Tool: A Practical Guide on Workpiece Size, Axis Configuration, and Precision
Choosing the right CNC machine tool is essential for efficient and precise manufacturing. Instead of focusing on price or brand alone, consider your machining needs, including workpiece size, complexity, material, and automation requirements. This guide helps you select the ideal CNC machine for your production goals.
Headline
Knowledge
The Hidden Power Behind Stable Robot Operation: Structural Components
Imagine walking into your kitchen in the morning and seeing the robotic arm of an automatic coffee machine steadily grasping your cup, or observing a robot arm in a warehouse rapidly and precisely moving boxes. Behind these smooth movements, it is not just motors or programming at work; structural components quietly provide critical support. Frames, brackets, and housings do more than maintain the skeleton—they carry high-precision gears and bearings, distribute motion loads, protect internal systems, and ultimately allow the robot to move as naturally and steadily as a human hand.
Headline
Knowledge
The Hidden Secret Behind a Robot’s Smooth Rotation: The Precision Craft of Gears and Bearings
In industrial automation and smart manufacturing, the ability of robotic arms to rotate as fluidly as a human wrist is not the result of a single component, but rather the synergy of two critical “invisible parts”: gears and bearings. Together, they form the core of robotic joints, ensuring every motion is both precise and smooth. These components, however, are not simply shaped from raw steel; they are the outcome of multiple sophisticated processes—CNC machining, heat treatment, and precision grinding—to meet the highest standards of accuracy and durability.
Headline
Knowledge
The Secret Behind Fuel Efficiency: How CNC Machines Maximize Every Drop of Fuel
When we lightly press the accelerator and enjoy a smooth drive, there’s an invisible hero quietly at work behind the scenes: the CNC machine crafting every precise engine component. For consumers, fuel-efficient cars are often the top choice. For manufacturers, fuel efficiency is a critical factor that defines product competitiveness. Yet few realize that the journey toward efficiency doesn’t start at the gas pump—it begins with the machines that shape every micron of the engine. CNC machines are the unsung heroes making it all possible.
Headline
Knowledge
Redefining Makeup Removal: Evolving from Traditional Nonwovens to Medical-Grade Standards
As skincare routines become increasingly refined, makeup removal products are no longer secondary tools used solely for eliminating cosmetics. Instead, they have become the first line of defense for skin health, anti-irritation performance, and the sensory experience of daily rituals. The material composition and structural engineering of removal substrates—such as cotton pads, cleansing cloths, and wipes—are undergoing continuous optimization. The industry is shifting from simple absorbent functions toward advanced development that combines low friction, minimal residue, enhanced skin compatibility, and environmental sustainability.
Headline
Knowledge
The Superpower of PCBs: Unveiling the Magic of Heat Dissipation
Every PCB is like a bustling miniature city: the electric current flows like nonstop traffic, and the electronic components are the lively citizens. When “traffic jams” occur, heat builds up quickly. Without proper thermal design, LEDs, CPUs, and power transistors can “overheat” and fail. A PCB isn’t just a circuit-connecting board—it also acts as the city’s “air-conditioning engineer.” Copper traces serve as high-speed distribution lanes, thermal vias function like air ducts, and the board material and metal backing work as invisible heat-dispelling magic. Combined with airflow management inside the enclosure, the PCB efficiently channels heat away, ensuring components perform reliably and quietly safeguarding the entire electronic system.
Headline
Knowledge
From Marine Polysaccharides to Pet Wellness: A New Milestone in Fucoidan Applications
In recent years, companion animals have come to occupy an increasingly significant role in human life—not merely as pets, but as integral members of the family. As pet owners place growing emphasis on animal health and longevity, the demand for functional health ingredients has surged. Among these, fucoidan, a marine-derived polysaccharide extracted from brown seaweed, has emerged as a key player in the field of pet nutritional science. Recognized for its immunomodulatory, antioxidant, and cellular repair properties, fucoidan is redefining the standards for preventive care and holistic wellness in companion animals.
Headline
Knowledge
Eco-Friendly Tableware and Food Safety: A Choice for Both the Environment and Health
With a global increase in plastic reduction and environmental awareness, a growing number of businesses and consumers are opting for eco-friendly tableware made from natural or biodegradable materials to replace traditional plastic items. Eco-friendly tableware—such as that made from bamboo fiber, sugarcane bagasse, leaf fiber, or PLA—typically does not contain harmful substances like plasticizers or BPA, thus reducing potential health risks. According to the European Union's Food Contact Materials Regulation (EC No. 1935/2004), "food contact articles shall not transfer their constituents to food in quantities that could endanger human health." However, when production processes or manufacturing technologies are inadequate, eco-friendly tableware can still pose food safety risks.
Headline
Knowledge
Food Cleanliness and Its Impact on the Human Body: A Farm-to-Table Guarantee
The cleanliness of food, defined as the hygienic state of food surfaces and production environments, is crucial for consumer health. The World Health Organization (WHO) reports that globally, approximately 600 million people fall ill each year from consuming contaminated food, leading to about 420,000 deaths.
Headline
Knowledge
Green Printing Transformation Becomes the Core Competitiveness of a Sunset Industry
As global concerns over climate change, plastic pollution, and carbon emissions intensify, the printing industry is undergoing a profound green transformation. From packaging and commercial publishing to labels and promotional materials, green printing is no longer just an added value—it's becoming a fundamental requirement for brand compliance and supply chain standards.
Agree