What is Ceramic Injection Molding Technology (CIM)?
Knowledge

What is Ceramic Injection Molding Technology (CIM)?

Powder injection molding (PIM), including metal injection molding (MIM) and ceramic injection molding (CIM), is a one-shot molding technology that combines high throughput and high precision. This technology has been widely used in many industries to produce various precision parts.
Published: Oct 25, 2022
What is Ceramic Injection Molding Technology (CIM)?

What is Ceramic Injection Molding Technology (CIM)?

Ceramic Injection Molding (CIM) is a new process for preparing ceramic parts developed by combining the polymer injection molding method with the ceramic preparation process. CIM technology is similar to metal injection molding (MIM) technology. They are the main branches of powder injection molding (PIM) technology and are developed based on relatively mature polymer injection molding technology. For mass production of ceramic products with high dimensional accuracy and complex shapes, the use of ceramic powder molding is the most advantageous.

The ceramic injection molding technology is to add thermoplastic resin, thermosetting resin, plasticizer, and anti-friction agent to the ceramic powder to make the ceramic powder into a viscous elastomer, and then inject the heated and mixed chain slurry into the metal mold from the nozzle. Commonly used thermoplastic resins are polyethylene, polystyrene, and polypropylene, and the additional amount is 10%~30%. CIM technology can achieve the appearance that the traditional dry pressing process cannot achieve, and the product can almost not be restricted by appearance.

Features of Ceramic Injection Molding Technology (CIM):

Advantage:
  • The molding process has the characteristics of a high degree of mechanization and automation, high production efficiency, short molding cycle, and high blank strength, and its process can be precisely controlled by the program, which is easy to achieve large-scale and large-scale production.
  • It can nearly net shape various small ceramic parts with complex geometric shapes and special requirements, so that the sintered ceramic products do not need to be machined or less processed, thereby reducing the expensive ceramic processing cost.
  • The formed ceramic products have extremely high dimensional accuracy and surface finish.
Disadvantages:
  • One-time equipment investment and processing costs are high, and it is only suitable for mass production.

The Process Flow and Process of Ceramic Injection Molding (CIM):

  • Feeding preparation:
    The feed is a mixture of powder and binder. The injection process requires the injection feed to have good fluidity, which requires the selection of powders that meet the requirements and an appropriate binder system, and a certain loading ratio at a certain temperature. Injection molding feeds, to ensure the smooth progress of the subsequent process, and its products may go from the laboratory to the high-tech market. So, feed preparation is critical in the whole process.
  • Injection molding and mold design:
    Improper control of the injection molding process can lead to the formation of many defects in the product, such as cracks, pores, welds, delamination, powder, and binder separation, etc., which cannot be detected until debinding and sintering. CIM often uses multi-cavity molds. The dimensions of each cavity are different, and the wear of the cavity in use will lead to different sizes of parts. In addition, the use of injection return material can affect viscosity and rheology. Therefore, controlling and optimizing molding parameters such as injection temperature, mold temperature, injection pressure, and pressure holding time is crucial to reducing the fluctuation of green body weight, preventing the separation and segregation of components in the injection material, and improving product yield and material utilization. The mold design of CIM technology mainly considers the flow control of the feed material in the mold cavity during injection molding. Because most CIM products are small-sized parts with complex shapes and high precision requirements, it is necessary to carefully design and arranges the position of the feed port, the length of the runner, and the position of the exhaust hole. Of course, mold design requires a clear understanding of feed rheological properties, cavity temperature, and residual stress distribution. In addition, computer simulation technology will play an important role in powder injection molding mold design.
  • Degreasing process:
    Degreasing is the process of removing organic matter from the molding body and producing a small amount of sintering by heating and other physical methods. Compared to batching, molding, sintering, and post-processing of ceramic parts, debinding is the most difficult and important factor in injection molding. Incorrect process methods and parameters of the debinding process cause inconsistent product shrinkage, resulting in deformation, cracking, stress, and inclusions. Debinding is important for subsequent sintering, and cracks and deformations that occur during debinding cannot be compensated for by sintering. Binder and degreasing are linked together to determine the way of degreasing. In addition to traditional thermal degreasing and solvent degreasing, the current degreasing process also includes catalytic degreasing and water-based extraction degreasing developed in recent years.
  • Sintering:
    The degreasing ceramic green body is densified and sintered at high temperature to obtain dense ceramic parts with desired appearance, shape, dimensional accuracy, and microstructure. Since the ceramic injection molding blank contains pores left by degreasing, the product shrinkage rate is relatively large during sintering, usually reaching 13%-15%. The research focus of CIM technology is the precision control of sintered dimensions. In addition, sintering equipment is also the key to sintering technology.

Several Elements of the Ceramic Powder Injection Molding Process:

  • Selection of raw material powder:
    The cheap and high-quality powder is one of the key factors in the CMI process. The physical and chemical properties of the selected ceramic powder, such as particle morphology, size, distribution, and specific surface area, have a great influence on the rheological properties of the mixed melt. The influence of the characteristics of ceramic powder on the injection molding melt is reflected in the solid phase volume fraction, powder particle size, and particle size distribution. In addition to the general powder injection molding requirements for raw material powders, such as powder with no agglomeration, cleanliness, and no impurities, etc., CMI has some special requirements for powder performance. Requirements, improve the stability of the molding process and optimize the particle size distribution of the ceramic powder, increase the volume fraction of the solid phase, or reduce the viscosity of the suspension.
  • Selection of binder:
    Binder is the core and key in CMI technology. The uniform mixing of the binder and the powder can improve the fluidity of the powder and enable the powder to be filled into the desired shape. It has an important impact on the entire process. Therefore, the composition and configuration of the binder are the most confidential technical know-how in injection molding.

    Adhesives for CIM must have the following properties:

    • Flow characteristics: The fluidity is related to the molecular weight and distribution of the binder. Generally, low-molecular-weight binders have lower viscosity and better flowability, while high-molecular-weight binders have higher viscosity and higher flowability. In general, we believe that the viscosity of the binder at the injection molding temperature should be less than 0.1 Pa.s, and the fluctuation of the viscosity with temperature should not be too large.
    • The relationship between the binder and the powder: The binder must be able to wet the powder well and have good adhesion to the powder. The wetting angle between the binder and the powder should be small. To improve the wetting properties of the binder, some surfactants, such as stearate and titanate, are added. At the same time, the binder generates capillary force to adsorb the particles by wetting the particles, so that the green body is not deformed. Furthermore, the binder should be inert concerning the powder.
    • The binder is composed of multi-component organic substances: To meet the fluidity requirements of the feed, it is difficult to achieve a single type of organic binder, and the binder composed of multi-component organic polymers is more favorable for degreasing at the same time, the compatibility between the organic polymers of each component of the binder is better.
    • The adhesive has higher thermal conductivity and lower thermal expansion coefficient: Higher thermal conductivity dissipates thermal energy in a larger area to avoid defects due to thermal stress, while a lower thermal expansion coefficient can Reduce the thermal shock of the body and reduce defects. In addition, the binder must also be non-toxic, non-polluting to the environment, non-volatile, non-hygroscopic, non-changing in cyclic heating performance, etc.

  • Mixing process:
    Before injection molding, the ceramic powder and the binder must be fully mixed evenly. After the binder formulation is selected, the addition amount should be limited to the minimum required. The mixing sequence is to first add a binder with a high melting point and a large particle size, mix and dissolve, then add the ingredients with a low melting point, add powder, and finally add a plasticizer, generally mixing for more than 30 minutes. There are three types of mixers suitable for preparing mixtures for ceramic injection molding, the rolling mills and Banbury mixers are batch operated, and the extruders are semi-continuously operated. Extruders are generally single-screw or twin-screw, with the latter being more efficient. A distinguishing feature of many screw extruders is the variety and variation in the geometry of the runners to avoid unmixed material.
  • Injection molding process:
    Injection molding refers to a process in which pellets are heated and softened by an injection molding machine and then injected into a mold, and then cooled and re-solidified in the mold to obtain the desired shape. The injection molding machine consists of an injection device, a clamping device (mold installation part), a hydraulic device, and an electrical control device. Injection molding ceramic materials require the corresponding parts of the injection machine to be resistant to wear, especially the screw, check valve, and barrel of the injection machine.
  • Degreasing process:
    Degreasing is required before sintering. Degreasing is the process of removing the binder components in injection molding by physical or chemical methods. It is the longest and most critical step in the ceramic injection molding process. With the increase and improvement of the binder system, a variety of CIM degreasing methods have been formed, including solvent degreasing, siphon degreasing, catalytic degreasing, water-based extraction degreasing, supercritical extraction degreasing, microwave degreasing, etc.
  • Sintering process:
    After degreasing, the size of degreasing is almost the same as that of the preform, it is a porous molded body with low density, so high-performance dense products need to be obtained by high-temperature sintering. Various sintering methods and densification measures in powder metallurgy are suitable for CIM. The sintering speed is related to viscous flow, coagulation, volume diffusion, surface diffusion, etc. The smaller the particle diameter, the lower the melt viscosity, and the higher the surface tension, the faster the sintering rate. And after sintering, the product generally has a shrinkage rate of about 13-20%.

Application of CIM Ceramic Injection Molding:

Injection molding technology has been applied to the preparation of various high-performance ceramic products. Such as ceramic medical devices in the biomedical field, ceramic brackets, and ceramic dental posts for dental orthodontics and restoration. Zirconia ceramic ferrules and ceramic sleeves for optical communications. Alumina insulating ceramic components are used in the semiconductor and electronics industries, such as integrated circuit high-encapsulation tubes, small vacuum switch ceramic tubes, and small ceramic sliding shafts. Ceramic knives, ceramic bracelets, and ceramic cases are used in modern life and watchmaking. Turbine rotors, blades, aircraft, spacecraft bearings, rocket nose cones, etc. in the aerospace industry. Automotive engines, valves, pistons, turbocharger rotors, nozzles, etc. in the automotive industry.

Published by Oct 25, 2022 Source :read01

Further reading

You might also be interested in ...

Headline
Knowledge
From Cavitation Effect to Industrial Applications: The Secrets of Ultrasonic Cleaning
When your glasses, tableware, or electronic components are stained with stubborn dirt, what can you do? Traditional methods often require vigorous scrubbing or even harsh chemical solvents, which are not environmentally friendly and may scratch the item. At this moment, ultrasonic cleaning acts like an “invisible little helper”, reaching deep into grooves and gaps to gently yet effectively remove contaminants.
Headline
Knowledge
The “Spark Magician” of Metalworking
Electrical Discharge Machining (EDM) is a non-traditional machining process that removes metal through electrical sparks. Unlike conventional methods, it is not limited by material hardness and can precisely create deep cavities, micro-holes, and complex structures in hardened steel, tungsten carbide, or superalloys. The three main types of EDM include wire cutting, die-sinking, and hole drilling, which are widely applied in mold making, aerospace, automotive, and medical industries. Although EDM has a slower processing speed, works only with conductive materials, and requires consideration of electrode wear and surface treatment, its advantages in high precision, zero cutting force, and superior surface finish make it an indispensable technology in precision manufacturing. Moreover, it continues to evolve in line with the trend toward smart manufacturing.
Headline
Knowledge
Press Brake vs Shearing Machine: Functional and Technical Comparison of Industrial Processing Equipment
Press Brake and Shearing Machine are two essential types of equipment in the field of machine tools, widely used in the processing of metal, wood, and other materials. They play critical roles in manufacturing, enabling efficient and precise material forming and cutting. This article introduces the definitions, functions, technical features, and applications of folding and cutting machines, offering neutral and practical knowledge sharing.
Headline
Knowledge
Master Chuck Types & Selection: The Essential Guide for Machinists
In the world of precision manufacturing, every minute detail can determine the quality of the final product. The chuck is a critical yet often overlooked component—it's not just a tool for holding a workpiece, but the very heart of ensuring machining accuracy, efficiency, and safety. This article will take you on a deep dive into the diverse universe of chucks, covering their operating principles, design philosophies, common types, and how to select the right jaws and chucks for different needs. Whether you're new to the industry or a seasoned engineer, this guide will unlock the intricate secrets of chucks, helping you master every detail on your path to manufacturing success.
Headline
Knowledge
An Overview of Electrical Discharge Machining (EDM)
Electrical Discharge Machining (EDM) is a non-traditional manufacturing process that utilizes electrical sparks to remove material from a workpiece. Unlike conventional machining methods such as milling or turning, which rely on physical contact between a tool and the material, EDM operates without direct contact, making it ideal for processing hard or brittle materials that are difficult to machine otherwise. The process involves generating a series of rapid electrical discharges between an electrode and the workpiece, submerged in a dielectric fluid, which erodes the material through thermal energy. This technique has revolutionized precision manufacturing by enabling the creation of complex geometries with high accuracy.
Headline
Knowledge
Applications of Machine Tools in the Aerospace Industry
The aerospace industry is a highly specialized and technology-driven sector, encompassing the design, manufacturing, and maintenance of aircraft, spacecraft, satellites, and related equipment. Machine tools play a critical role in this field, enabling the precision machining of complex metal and composite material components. These tools enhance production efficiency while ensuring the accuracy and reliability required to meet the stringent safety and performance standards of aerospace. This document outlines the key applications, technologies, benefits, and future trends of machine tools in the aerospace industry.
Headline
Knowledge
Smart Healthcare Uncovered:How AI Is Transforming Clinical Practice?
With the rapid rise of artificial intelligence (AI), the healthcare industry is undergoing a disruptive transformation. AI is significantly improving diagnostic accuracy and treatment efficiency while profoundly redefining healthcare professionals’ roles and patient experiences. A comprehensive understanding of the core technologies and clinical applications behind this transformation is essential for grasping the future trends and strategic directions of smart healthcare.
Headline
Knowledge
Principle and Applications of Laser Cutting Machines
As the global manufacturing industry advances toward higher precision and efficiency, laser cutting technology has become a key enabler of industrial upgrading. Compared with traditional shearing, stamping, and mechanical cutting, laser cutting offers non-contact processing, higher accuracy, and greater flexibility. It significantly improves productivity while reducing secondary finishing. Today, it is widely adopted in metalworking and increasingly applied in electronics, aerospace, medical, and architectural design industries.
Headline
Knowledge
Why Are High-Quality Cutting Fluids Critical for Machining Quality?
In CNC and metalworking, cutting fluid is no longer just a coolant—it plays a critical role by providing lubrication, chip removal, and corrosion protection. With the right formulation and concentration, it can reduce cutting heat, minimize friction, extend tool life, and maintain workpiece accuracy. High-pressure cooling further enhances efficiency in deep-hole and high-speed machining. The pairing of tool material with the proper cutting fluid is equally crucial; correct selection and maintenance ensure process stability, prolong equipment life, and improve the overall work environment. Cutting fluid has become an indispensable investment in modern precision manufacturing.
Headline
Knowledge
Introduction to Emerging Printing Technologies: Opening New Horizons for the Future of Printing
With rapid technological progress and increasingly diverse market demands, traditional printing techniques are no longer sufficient to meet modern industry’s requirements for precision, efficiency, and sustainability. As a result, emerging technologies such as UV printing, 3D printing, and Nanoimprint Lithography (NIL) have risen to prominence, offering solutions with higher precision, broader applications, and lower production costs. These innovations have already demonstrated value across packaging, advertising, healthcare, semiconductors, and construction. In the following sections, we will explore their technical features and real-world applications, highlighting the advantages and future potential of these cutting-edge printing technologies.
Headline
Knowledge
The Core Standard for Life-Critical Systems: A Complete Guide to IPC Classification
In high-risk fields such as medical, aerospace, and automotive, IPC classifications determine PCB reliability and safety. Class 3 represents the highest standard, requiring zero tolerance for defects, complete via filling, adequate copper annular rings, and rigorous inspections to ensure operation under extreme conditions, while Class 2 suits long-term use in non-critical equipment with minor cosmetic flaws allowed. Class 3’s strict criteria cover component placement, soldering, plating thickness, and environmental testing—adding cost and production time, but far outweighing the risks of failure in life- or safety-critical systems. Thus, defining high-risk equipment as Class 3 during design is essential, making IPC classification a core safeguard rather than an option.
Headline
Knowledge
The Power of Color: How the Printing Industry Protects Brand Quality
In the printing industry, color has always been a core element influencing both quality and sensory experience. Whether in packaging, advertising, or publications, color accuracy directly affects consumer perception and trust in a brand. With the rise of digitalization and globalization, companies increasingly demand brand consistency, making color management more than just an aesthetic concern—it is a safeguard for printing quality and brand value. This article explores the importance of color management, the application of ICC color calibration, and Pantone’s role in brand identity, providing a comprehensive overview of the core knowledge and practical value of color management in printing.
Agree